Fortschr Neurol Psychiatr 2019; 87(09): 483-491
DOI: 10.1055/a-0637-1820
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Zusammenhang zwischen der Einnahme von Lithium und neuroradiologischen Veränderungen bei der bipolar affektiven Störung: Gibt es Hinweise auf ein klinisches Ansprechen?

The relationship between intake of lithium and neuroradiological alterations in bipolar disorder. Are there predictors of clinical remission?
Carlo Hamm
1   Medizinische Univerisität Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin;
,
Robert Queissner
1   Medizinische Univerisität Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin;
,
Rene Pilz
1   Medizinische Univerisität Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin;
,
Armin Birner
1   Medizinische Univerisität Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin;
,
Martina Platzer
1   Medizinische Univerisität Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin;
,
Frederike Fellendorf
1   Medizinische Univerisität Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin;
,
Alexander Maget
1   Medizinische Univerisität Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin;
,
Susanne Bengesser
1   Medizinische Univerisität Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin;
,
Nina Dalkner
1   Medizinische Univerisität Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin;
,
Bernd Reininghaus
2   Medizinische Universität Graz, Universitätsklinik für medizinische Psychologie und Psychotherapie
,
Eva Reininghaus
1   Medizinische Univerisität Graz, Universitätsklinik für Psychiatrie und psychotherapeutische Medizin;
› Author Affiliations
Further Information

Publication History

eingereicht 02 February 2018

akzeptiert 27 May 2018

Publication Date:
19 November 2018 (online)

Zusammenfassung

Zur Vermeidung affektiver Krankheitsphasen im Rahmen der bipolar affektiven Störung erfolgt die psychopharmakologische Behandlung mittels sogenannter Phasenprophylaktika. Traditionell werden unter diesem Begriff die Wirkstoffe Lithium, Valproat, Lamotrigin und Carbamazepin zusammengefasst. Moderne Therapiekonzepte zur Phasenprophylaxe berücksichtigen ebenfalls Antipsychotika der zweiten Generation. In dieser Literaturrecherche sollen die Zusammenhänge zwischen den biologischen Veränderungen des Gehirns und der Einnahme von Lithium dargestellt werden. Hierbei werden Daten aus makrostruktureller, mikrostruktureller und spektroskopischer Bildgebung angeführt.

Daten zu Veränderungen der Makrostruktur unter Lithiumtherapie sind quantitativ am stärksten untersucht. So scheint Lithium im Zusammenhang mit einer Vergrößerung des Volumens von kortikaler und subkortikaler grauer Substanz zu stehen. Des Weiteren zeigt sich unter Lithiumtherapie eine geringradigere mikrosturkurelle Veränderung in Marklageralrealen was auf einen möglichen neuroprotektiven Effekt von Lithium zurückzuführen sein könnte. An Hand der 7-Lithium-MR-Spektroskopie konnte gezeigt werden, dass remittierte und nicht-remittierte Patientinnen und Patienten signifikante intrazerebrale Konzentrationsunterschiede aufzeigen.

Präklinische Daten weisen auf lithiuminduzierte promitotische, als auch antiapoptotische Mechanismen hin und stützen somit die Hypothese eines volumenerhaltenden Effektes mittels Neurogenese. Jedoch könnten hinsichtlich des Lithiums auch osmotische und physikalische Effekte maßgebliche Ursachen für die Volumenzunahme in der makrostrukturellen Bildgebung bilden.

Das mehrheitliche Vorhandensein von Querschnittsstudien zu dieser Thematik und kleine Kohortengrößen stellen typische Limitationen der untersuchten Studien dar.

Hinsichtlich der Forschung zum Lithiummetabolismus könnte insbesondere die 7-Lithium-Spektroskopie zukünftig eine Methode darstellen, um diesbezügliche pharmakokinetische Unterschiede zwischen remittierten und nicht-remittierten Patienten aufzuklären.

Abstract

For avoiding affective episodes, patients with bipolar disorders are treated with mood stabilizers. Under that term, the substances lithium, valproic acid, lamotrigine and carbamazepine are included. In the light of upcoming new psychiatric concepts, the use of second generation antipsychotics is also taken into consideration in pharmacological treatment. In this review, the relation between brain structure and the use of lithium in bipolar disorders is examined. Therefore, results from MRI-, DTI-, SPECT-studies assessing this relation, were included.

Most of the studies are cross-sectional and examined the effects of lithium. The latter is associated with increased cortical and sub-cortical gray matter volume and ameliorative white matter microstructure. 7-lithium spectroscopy showed a significant difference in brain-lithium concentrations between remitted and non-remitted patients.

There are preclinical studies reporting induction of promitotic and antiapoptotic effects by lithium. This literature underpins the hypothesis of lithium-induced neurogenesis. However, osmotic and physical effects of lithium could also explain the demonstrated volume gain in bipolar human brain.

Cross-sectional design and small patient groups are typical limitations of numerous studies included in this review.

Notably, with the 7-lithium spectroscopy of the central nervous system, new perspectives in clinical research to clarify pharmacokinetic differences between remitted and non-remitted bipolar patients can be established in future.

 
  • Literatur

  • 1 Phillips ML, Frank E. Redefining bipolar disorder: toward DSM-V. Am J Psychiatry 2006; 163 (07) : 1135-1136 .
  • 2 Zanetti MV, Otaduy MC, de Sousa RT. et al. Bimodal effect of lithium plasma levels on hippocampal glutamate concentrations in bipolar II depression: a pilot study. Int J Neuropsychopharmacol 2014 Oct 31; 18. (6): 10.1093 / ijnp / pyu058.
  • 3 Phillips ML, Travis MJ, Fagiolini A. et al. Medication effects in neuroimaging studies of bipolar disorder. Am J Psychiatry 2008; Mar; 165 (03) : 313-320 .
  • 4 Hafeman DM, Chang KD, Garrett AS. et al. Effects of medication on neuroimaging findings in bipolar disorder: an updated review. Bipolar Disord 2012; Jun; 14 (04) : 375-410 .
  • 5 Reiser M, Kuhn F, Debus J. Duale Reihe Radiologie. 3. . Auflage ed. New York: Thieme Stuttgart; 2011
  • 6 Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed 2002; 15 ( 7‐8 ): 435-455 .
  • 7 Goebel R, Zimmerman J. Pfadfinder durch die weiße Substanz. SdW 2011. 18.05.2011; Gehirn & Geist(6).
  • 8 Forester BP, Finn CT, Berlow YA. et al. Brain lithium, N‐acetyl aspartate and myo‐inositol levels in older adults with bipolar disorder treated with lithium: a lithium‐7 and proton magnetic resonance spectroscopy study. Bipolar Disord 2008; 10 (06) : 691-700 .
  • 9 Jäncke L, Heuer H, Rösler F, Tack WH. Methoden der Bildgebung in der Psychologie und den kognitiven Neurowissenschaften. 1. . Auflage ed. Stuttgart: Kohlhammer; 2005
  • 10 Kauffmann G, Moser E, Radiologie Sauer R. 3. . Auflage ed. München: Urban & Fischer Verlag; 2006
  • 11 Backens M. Grundlagen der MR-Spektroskopie. Radiologe 2010; 50 (09) : 767-774 .
  • 12 Lee J, Adler C, Norris M. et al. 4‐T 7Li 3 D MR spectroscopy imaging in the brains of bipolar disorder subjects. Magnetic resonance in medicine 2012; 68 (02) : 363-368 .
  • 13 Nanz D. Diffusionsbildgebung. In: Weishaupt D, Köchli V, Marincek B. editors. Wie funktioniert MRI?. 7. . Auflage ed. Berlin, Heidelberg: Springer-Verlag; 2014. p. 99-104 .
  • 14 Le Bihan D, Mangin J, Poupon C. et al. Diffusion tensor imaging: concepts and applications. Journal of magnetic resonance imaging 2001; 13 (04) : 534-546 .
  • 15 McDonald C. Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder. Curr Neuropharmacol 2015; 13 (04) : 445-457 .
  • 16 Moore GJ, Bebchuk JM, Wilds IB. et al. Lithium-induced increase in human brain grey matter. The Lancet 2000; 356 ( 9237 ): 1241-1242 .
  • 17 Moore GJ, Cortese BM, Glitz DA. et al. A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry 2009; Apr 21; 70 (05) : 699-705 .
  • 18 Selek S, Nicoletti M, Zunta-Soares GB. et al. A longitudinal study of fronto-limbic brain structures in patients with bipolar I disorder during lithium treatment. J Affect Disord 2013; 150 (02) : 629-633 .
  • 19 Hallahan B, Newell J, Soares JC. et al. Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Focus 2011
  • 20 Yucel K, McKinnon MC, Taylor VH. et al. Bilateral hippocampal volume increases after long-term lithium treatment in patients with bipolar disorder: a longitudinal MRI study. Psychopharmacology (Berl) 2007; 195 (03) : 357-367 .
  • 21 Simonetti A, Sani G, Dacquino C. et al. Hippocampal subfield volumes in short‐and long‐term lithium‐treated patients with bipolar I disorder.Bipolar Disord. 2016
  • 22 Höschl C, Alda M. Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. Journal of psychiatry & neuroscience: JPN 2012; 37 (05) : 333 .
  • 23 Hajek T, Cullis J, Novak T. et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment. Bipolar Disord 2012; 14 (03) : 261-270 .
  • 24 Hibar D, Westlye LT, van Erp TG. et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry. 2016
  • 25 Savitz J, Nugent AC, Bogers W. et al. Amygdala volume in depressed patients with bipolar disorder assessed using high resolution 3T MRI: the impact of medication. Neuroimage 2010; 49 (04) : 2966-2976 .
  • 26 Usher J, Menzel P, Schneider-Axmann T. et al. Increased right amygdala volume in lithium‐treated patients with bipolar I disorder. Acta Psychiatr Scand 2010; 121 (02) : 119-124 .
  • 27 Foland-Ross LC, Thompson PM, Sugar CA. et al. Three-dimensional mapping of hippocampal and amygdalar structure in euthymic adults with bipolar disorder not treated with lithium. Psychiatry Research: Neuroimaging 2013; 211 (03) : 195-201 .
  • 28 Hajek T, Kopecek M, Alda M. Relevance of brain plasticity to neuroprogression and staging of bipolar disorders – opposing effects of illness burden and lithium treatment. European Psychiatry 2016; 33: S7 .
  • 29 Radenbach K, Flaig V, Schneider-Axmann T. et al. Thalamic volumes in patients with bipolar disorder. Eur Arch Psychiatry Clin Neurosci 2010; 260 (08) : 601-607 .
  • 30 Sassi RB, Nicoletti M, Brambilla P. et al. Increased gray matter volume in lithium-treated bipolar disorder patients. Neurosci Lett 2002; 329 (02) : 243-245 .
  • 31 Bora E, Fornito A, Yücel M. et al. Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol Psychiatry 2010; 67 (11) : 1097-1105 .
  • 32 Germana C, Kempton M, Sarnicola A. et al. The effects of lithium and anticonvulsants on brain structure in bipolar disorder. Acta Psychiatr Scand 2010; 122 (06) : 481-487 .
  • 33 Walterfang M, Wood AG, Barton S. et al. Corpus callosum size and shape alterations in individuals with bipolar disorder and their first-degree relatives. Prog Neuro-Psychopharmacol Biol Psychiatry 2009; 33 (06) : 1050-1057 .
  • 34 Emsell L, Langan C, Van Hecke W. et al. White matter differences in euthymic bipolar I disorder: a combined magnetic resonance imaging and diffusion tensor imaging voxel‐based study. Bipolar Disord 2013; 15 (04) : 365-376 .
  • 35 Kim D, Cho HB, Dager SR. et al. Posterior cerebellar vermal deficits in bipolar disorder. J Affect Disord 2013; 150 (02) : 499-506 .
  • 36 Cerqueira, Ana Claudia Rodrigues de. Reis MCd, Novis FD. et al Cerebellar degeneration secondary to acute lithium carbonate intoxication. Arq Neuropsiquiatr 2008; 66 ( 3A ): 578-580 .
  • 37 Pardina-Vilella L, Garcia-Gorostiaga I, Azkune-Calle I. et al. Reversible alterations in the dentate nuclei and rapid-onset cerebral atrophy due to neurotoxicity caused by lithium. Rev Neurol 2017; Sep 1; 65 (05) : 223-225 .
  • 38 Macritchie KA, Lloyd AJ, Bastin ME. et al. White matter microstructural abnormalities in euthymic bipolar disorder. Br J Psychiatry 2010; Jan; 196 (01) : 52-58 .
  • 39 Sussmann JE, Lymer GKS, McKirdy J. et al. White matter abnormalities in bipolar disorder and schizophrenia detected using diffusion tensor magnetic resonance imaging. Bipolar Disord 2009; 11 (01) : 11-18 .
  • 40 Benedetti F, Absinta M, Rocca MA. et al. Tract‐specific white matter structural disruption in patients with bipolar disorder. Bipolar Disord 2011; 13 (04) : 414-424 .
  • 41 Benedetti F, Bollettini I, Barberi I. et al. Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder. Neuropsychopharmacology 2013; 38 (02) : 313-327 .
  • 42 Haarman B. Diffusion Tensor Imaging in Euthymic Bipolar. 2016
  • 43 Emsell L, Langan C, Van Hecke W. et al. White matter differences in euthymic bipolar I disorder: a combined magnetic resonance imaging and diffusion tensor imaging voxel‐based study. Bipolar Disord 2013; 15 (04) : 365-376 .
  • 44 Sarrazin S, Poupon C, Linke J. et al. A multicenter tractography study of deep white matter tracts in bipolar I disorder: psychotic features and interhemispheric disconnectivity. JAMA psychiatry 2014; 71 (04) : 388-396 .
  • 45 Colla M, Schubert F, Bubner M. et al. Glutamate as a spectroscopic marker of hippocampal structural plasticity is elevated in long-term euthymic bipolar patients on chronic lithium therapy and correlates inversely with diurnal cortisol. Mol Psychiatry 2009; 14 (07) : 696-704 .
  • 46 Machado-Vieira R, Gattaz WF, Zanetti MV. et al. A Longitudinal (6-week) 3 T 1 H-MRS Study on the Effects of Lithium Treatment on Anterior Cingulate Cortex Metabolites in Bipolar Depression. European Neuropsychopharmacology 2015; 25 (12) : 2311-2317 .
  • 47 Machado-Vieira R, Otaduy M, Zanetti M. et al. A Selective Association between Central and Peripheral Lithium Levels in Remitters in Bipolar Depression: A 3T‐ 7Li Magnetic Resonance Spectroscopy Study. Acta Psychiatr Scand; 2015
  • 48 Kato T, Inubushi T, Takahashi S. Relationship of Lithium Concentrations: in the Brain Measured by Lithium-7: Magnetic Resonance Spectroscopy to: Treatment Response in Mania. J Clin Psychopharmacol 1994; 14 (05) : 330-335 .
  • 49 Harwood A. Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited. Molecular Psychiatry volume 10 pages 117-126 ( 2005; ) 2005.
  • 50 Davanzo P, Thomas MA, Yue K. et al. Decreased anterior cingulate myo-inositol / creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology 2001; 24 (04) : 359-369 .
  • 51 Friedman SD, Dager SR, Parow A. et al. Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol Psychiatry 2004; 56 (05) : 340-348 .
  • 52 Moore GJ, Bebchuk JM, Parrish JK. et al. Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am J Psychiatry 1999
  • 53 Silverstone PH, McGrath BM. Lithium and valproate and their possible effects on the myo-inositol second messenger system in healthy volunteers and bipolar patients. International Review of Psychiatry 2009; 21 (04) : 414-423 .
  • 54 Moore GJ, Bebchuk JM, Hasanat K. et al. Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2’s neurotrophic effects?. Biol Psychiatry 2000; 48 (01) : 1-8 .
  • 55 Silverstone PH, Wu RH, O’Donnell T. et al. Chronic treatment with lithium, but not sodium valproate, increases cortical N-acetyl-aspartate concentrations in euthymic bipolar patients. Int Clin Psychopharmacol 2003; 18 (02) : 73-79 .
  • 56 Patel NC, DelBello MP, Cecil KM. et al. Temporal change in N-acetyl-aspartate concentrations in adolescents with bipolar depression treated with lithium. J Child Adolesc Psychopharmacol 2008; 18 (02) : 132-139 .
  • 57 Gigante AD, Bond DJ, Lafer B. et al. Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta‐analysis. Bipolar Disord 2012; 14 (05) : 478-487 .
  • 58 Heath PR, Shaw PJ. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26 (04) : 438-458 .
  • 59 Aydin B, Yurt A, Gökmen N. et al. Trait-related alterations of N-acetylaspartate in euthymic bipolar patients: A longitudinal proton magnetic resonance spectroscopy study. J Affect Disord 2016; 206: 315-320 .
  • 60 Hajek T, Weiner MW. Neuroprotective Effects of Lithium in Human Brain? Food for Thought. Curr Alzheimer Res 2016; 13 (08) : 862-872 .
  • 61 Benedetti F, Poletti S, Radaelli D. et al. Lithium and GSK-3β promoter gene variants influence cortical gray matter volumes in bipolar disorder. Psychopharmacology (Berl) 2015; 232 (07) : 1325-1336 .
  • 62 Benedetti F, Bollettini I, Poletti S. et al. White matter microstructure in bipolar disorder is influenced by the serotonin transporter gene polymorphism 5‐HTTLPR. Genes, Brain and Behavior 2015; 14 (03) : 238-250 .
  • 63 Patel NC, DelBello MP, Cecil KM. et al. Lithium treatment effects on myo-inositol in adolescents with bipolar depression. Biol Psychiatry 2006; 60 (09) : 998-1004 .
  • 64 Dell’Osso L, Del Grande C, Gesi C. et al. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiatric Disease and Treatment 2016; 12: 1687 .
  • 65 Manji HK, Moore GJ, Chen G. Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic – depressive illness. Biol Psychiatry 2000; 48 (08) : 740-754 .
  • 66 Quiroz JA, Machado-Vieira R, Zarate Jr, CA. et al. Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology 2010; 62 (01) : 50-60 .
  • 67 Ferensztajn-Rochowiak E, Rybakowski JK. The effect of lithium on hematopoietic, mesenchymal and neural stem cells. Pharmacological Reports 2016; 68 (02) : 224-230 .
  • 68 Makoukji J, Belle M, Meffre D. et al. Lithium enhances remyelination of peripheral nerves. Proc Natl Acad Sci U S A 2012; Mar 6; 109 (10) : 3973-3978 .
  • 69 Mendes CT, Mury FB, de Sá Moreira E. et al. Lithium reduces Gsk3b mRNA levels: implications for Alzheimer disease. Eur Arch Psychiatry Clin Neurosci 2009; 259 (01) : 16-22 .
  • 70 Azim K, Butt AM. GSK3β negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia 2011; 59 (04) : 540-553 .
  • 71 Yan X, Hou H, Wu L. et al. Lithium regulates hippocampal neurogenesis by ERK pathway and facilitates recovery of spatial learning and memory in rats after transient global cerebral ischemia. Neuropharmacology 2007; 53 (04) : 487-495 .
  • 72 Rajkowska G, Clarke G, Mahajan G. et al. Differential effect of lithium on cell number in the hippocampus and prefrontal cortex in adult mice: a stereological study. Bipolar Disord 2016; 18 (01) : 41-51 .
  • 73 Cho Y, Cavalli V. HDAC signaling in neuronal development and axon regeneration. Curr Opin Neurobiol 2014; 27: 118-126 .
  • 74 Ookubo M, Kanai H, Aoki H. et al. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: brain region specific changes. J Psychiatr Res 2013; 47 (09) : 1204-1214 .
  • 75 Lüllmann-Rauch R, Asan E. 9.2. Bauelemente des Nervensystems. In: Lüllmann-Rauch R. Asan E. editors. Histologie. 5. Auflage ed Stuttgart: Georg Thieme Verlag KG; 2015. p. 191-214 .
  • 76 Matsunaga S, Kishi T, Annas P. et al. Lithium as a Treatment for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J Alzheimer’s Dis 2015; 48 (02) : 403-410 .
  • 77 Phatak P, Shaldivin A, King L. et al. Lithium and inositol: effects on brain water homeostasis in the rat. Psychopharmacology (Berl) 2006; 186 (01) : 41-47 .
  • 78 Moffett JR, Ross B, Arun P. et al. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 2007; 81 (02) : 89-131 .
  • 79 Cousins DA, Aribisala B, Ferrier IN. et al. Lithium, gray matter, and magnetic resonance imaging signal. Biol Psychiatry 2013; 73 (07) : 652-657 .
  • 80 Monkul ES, Matsuo K, Nicoletti MA. et al. Prefrontal gray matter increases in healthy individuals after lithium treatment: a voxel-based morphometry study. Neurosci Lett 2007; 429 (01) : 7-11 .
  • 81 Josef Lichtinger. Quantitative Untersuchungen der lokalen Lithiumkonzentration im menschlichen Gehirn und ihr Bezug zu affektiven StörungenTechnische Universität München; 2015
  • 82 Nyul-Toth A, Suciu M, Molnar J. et al. Differences in the molecular structure of the blood-brain barrier in the cerebral cortex and white matter: an in silico, in vitro, and ex vivo study. Am J Physiol Heart Circ Physiol 2016; Jun 1; 310 (11) : H1702-14 .
  • 83 Rajan M, Rao KJ, Mamatha B. et al. Quantification of trace elements in normal human brain by inductively coupled plasma atomic emission spectrometry. J Neurol Sci 1997; 146 (02) : 153-166 .
  • 84 West IC, Rutherford PA, Thomas TH. Sodium‐lithium countertransport: physiology and function. J Hypertens 1998; 16 (01) : 3-13 .
  • 85 Alda M. Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry 2015; 20 (06) : 661-670 .
  • 86 Mallinger AG, Frank E, Thase ME. et al. Low rate of membrane lithium transport during treatment correlates with outcome of maintenance pharmacotherapy in bipolar disorder. Neuropsychopharmacology 1997; 16 (05) : 325-332 .
  • 87 Nierenberg AA, Friedman ES, Bowden CL. et al. Lithium treatment moderate-dose use study (LiTMUS) for bipolar disorder: a randomized comparative effectiveness trial of optimized personalized treatment with and without lithium. Am J Psychiatry 2013; 170 (01) : 102-110 .
  • 88 Yucel K, Taylor VH, McKinnon MC. et al. Bilateral hippocampal volume increase in patients with bipolar disorder and short-term lithium treatment. Neuropsychopharmacology 2008; 33 (02) : 361-367 .