Subscribe to RSS
DOI: 10.1055/a-0647-1765
Modified Fe3O4/HAp Magnetically Nanoparticles as the Carrier for Ibuprofen: Adsorption and Release Study
Publication History
received 28 May 2018
accepted 20 June 2018
Publication Date:
11 July 2018 (online)

Abstract
The adsorption capacity and release attributes of magnetic Fe3O4@hydroxyapatite (Fe3O4/HAp) nanoparticles for drug molecules can be improved by modified their surfaces with logical chosen organic groups. The internal surface of nanoparticles was functionalized with (3-aminopropyl) trimethoxysilane (APTS). Comparative studies of their adsorption and release properties for various model drug molecules (such as pure hydroxyapatite, Fe3O4@hydroxyapatite and functionalized Fe3O4@hydroxyapatite) were then conducted. The characteristic of the obtained materials was performed with X-ray-diffraction (XRD), energy dispersive X-ray microanalysis (EDS), fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), UV-Vis analysis, vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM). Results show that functionalized magnetic Fe3O4@hydroxyapatite nanoparticles leads than a substantial decrease of the drug delivery rate in pH=6.8 after investigated drug release in intestine environment. In addition, the results demonstrate that high adsorption capacity for drug and slower drug release rate was obtained after functionalized nanoparticles than Fe3O4@hydroxyapatite and pure hydroxyapatite.
-
References
- 1 Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M. Nd2O3 nanoastructures: Simple synthesis, characterization and its photocatalytic degradation of methylene blue. J Mol Liq 2017; 234: 430-436
- 2 Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M. Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. J Mol Liq 2017; 231: 306-313
- 3 Mortazavi-Derazkola S, Salavati-Niasari M, Amiri O. et al. Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J Energy Chem 2017; 26: 17-23
- 4 Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M. Simple sonochemical synthesis of Ho2O3-SiO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminant. Ultrason Sonochem 2017; 39: 452-460
- 5 Mohandes F, Salavati-Niasari M. Simple morphology-controlled fabrication of hydroxyapatite nanostructures with the aid of new organic modifiers. Chem Eng J 2014; 252: 173-184
- 6 Safajou H, Khojasteh H, Salavati-Niasari M. et al. Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2nanoparticles. J Colloid Interface Sci. 2017; 498: 423-432
- 7 Mortazavi-Derazkola S, Zinatloo-Ajabshir S, Salavati-Niasari M. Facile hydrothermal and novel preparation of nanostructured Ho2O3 for photodegradation of eriochrome black T dye as water pollutant. Adv Powder Technol 2017; 28: 747-754
- 8 Amiri M, Salavati-Niasari M, Pardakhty A. et al. Caffeine: A novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery. Materials science and engineering: C 2017; 76: 1085-1093
- 9 Jennifer Sudimack BA, Lee Robert J. (200) Targeted drug delivery via the folate receptor. Adv. Drug Delivery Rev 41: 147-162
- 10 Yokoyama M. Drug targeting eith nano-sized carrier systems. J Artif Organs 2005; 8: 77-84
- 11 Devanand G, Ramasamy S, Ramakrishnan V. et al. Nanocrystaline hydroxyapatite and zinc-doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin. 3Biotech 2011; 1: 173-186
- 12 Mortazavi-Derazkola S, Zinatloo-Ajabshir S, Salavati-Niasari M. Novel simple solvent-less preparation, characterization and degradation of the cationic dye over holmium oxide ceramic nanostructures. Ceram. Int. 2015; 41: 9593-9601
- 13 Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M. Sonochemical synthesis, characterization and photodegradation of organic pollutant over Nd2O3 nanostructures prepared via a new simple route. Sep. Purif. Technol. 2017; 178: 138-146
- 14 Mortazavi-Derazkola S, Zinatloo-Ajabshir S, Salavati-Niasari M. New facile preparation of Ho2O3 nanostructured material with improved photocatalytic performance. J. Mater. Sci.: Mater. Electron. 2017; 28: 1914-1924
- 15 Safari-Amiri M, Mortazavi-Derazkola S, Salavati-Niasari M. Synthesis and characterization of Dy2O3 nanostructures: enhanced photocatalytic degradation of rhodamine B under UV irradiation. J Mater Sci: Mater Electron 28: 6467-6474
- 16 Merget R, Bauer T, Kupper HU. et al. Health hazards due to the inhalation of amorphous silica. Arch Toxicol 2002; 75: 626-634
- 17 Devanand Venkatasubbu G, Ramasamy S, Ramakrishnan V. et al. Investigation on Zinc Doped Nanocrystalline Hydroxyapatite. International Journal of Nanoscience and Nanotechnology 2011; 2: 1-23
- 18 Devanand Venkatasubbu G, Ramasamy S. Ramakrishnan et al. Hydroxyapatite-Alginate Nanocomposite as Drug Delivery Matrix for Sustained Release of Ciprofloxacin. J Biomed Nanotechnol 2011; 7: 1-9
- 19 Wang HN, Li YB, Zuo Y. et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 2007; 28: 3338-3348
- 20 Hong ZK, Zhang PB, He CL. et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 2005; 26: 6296-6304
- 21 Dorozhkin SV, Epple M. Biological and Medical Significance of Calcium Phosphates. Angew Chem Int Ed 2002; 41: 3130-3146
- 22 Bezzi G, Celotti G, Landi E. et al. A novel sol–gel technique for hydroxyapatite preparation. Mater Chem Phys 2003; 78: 816-824
- 23 Hench LL, Wilson J. Surface-active biomaterials. Science 1984; 226: 630-663
- 24 Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 1998; 13: 94-117
- 25 Nasiri-Tabrizi B, Honarmandi P, Ebrahimi-Kahrizsangi R. et al. Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method J. Mater Lett 2009; 63: 543-546
- 26 Tas AC. Combustion synthesis of calcium phosphate bioceramic powders. J Eur Ceram Soc 2000; 20: 2389-2394
- 27 Lopez-Macipe A, Rodriguez-Clemente R, Hidalgo-Lopez A. et al. Wet Chemical Synthesis of Hydroxyapatite Particles from Nonstoichiometric Solutions. J Mater Synth Process 1998; 6: 21-26
- 28 Yang ZP, Gong XY, Zhang CJ. Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications. Chem Eng J 2010; 165: 117-121
- 29 Huang LY, Xu KW, Lu L. A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings. J Mater Sci Mater Med 2000; 11: 667-673
- 30 Fathi MH, Hanifi A. Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel. J Mater Lett 2007; 61: 2978-2983
- 31 Yuan Y, Liu C, Zhang Y. et al. Sol–gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template. Mater Chem Phys 2008; 112: 275-280
- 32 Sanosh KP, Chu MC, Balakrishnan A. et al. Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr Appl Phys 2009; 9: 1459-1462
- 33 Feng W, Mu-sen L, Yu-peng L. et al. A simple sol–gel technique for preparing hydroxyapatite nanopowders. J Mater Lett 2005; 59: 916-919
- 34 Chen CW, Oakes CS, Byrappa K. et al. Synthesis, characterization, and dispersion properties of hydroxyapatite prepared by mechanochemical-hydrothermal methods. J Mater Chem 2004; 14: 2425-2432
- 35 Bose S, Saha SK. Synthesis and Characterization of Hydroxyapatite Nanopowders by Emulsion Technique. Chem Mater 2003; 15: 4464-4469
- 36 Cao LY, Zhang CB, Huang JF. Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation. Ceram Int 2005; 31: 1041-1044
- 37 Gopi D, Thameen Ansari M, Shinyjoy E. et al. Synthesis and spectroscopic characterization of magnetic hydroxyapatite nanocomposite using ultrasonic irradiation. Spectrochimica Acta Part A 2012; 87: 245-250
- 38 Zhao C-X, Yu L, Middelberg APJ. Magnetic mesoporous silica nanoparticles end-capped with hydroxyapatite for pH-responsive drug release. J Mater Chem B 2013; 1: 4828-4833
- 39 Gu L, He X, Wu Z. Mesoporous Fe3O4/hydroxyapatite composite for targeted drug delivery. Mater Res Bull 2014; 59: 65-68
- 40 Ladron de Guevara-Fernandez S, Ragel CV, Vallet-Regi M. Bioactive glass-polymer materials for controlled release of ibuprofen. Biomaterials 2003; 24: 4037-4043
- 41 Krajewski A, Ravaglioli A, Roncari E. et al. Porous ceramic bodies for drug delivery. J Mater Sci Mater Med 2000; 11: 763
- 42 Ahola N, Rich J, Karjalainen T. et al. Release of ibuprofen from poly(e-caprolactone-co-D,L-lactide) and simulation of the release. J Appl Polym Sci 2003; 88: 1279-1288
- 43 Bakan F, Lacin O, Sarac H. A novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol 2013; 233: 295-302
- 44 Sena M, Meenakshi Sundaram N, Kandaswamy A. Synthesis and characterization of magnetite/hydroxyapatite tubes using natural template for biomedical applications. Bull Mater Sci 2016; 39: 509-517
- 45 Mortazavi-Derazkola S, Naimi-Jamal MR, Ghoreishi SM. Synthesis, Characterization, and Atenolol Delivery Application of Functionalized Mesoporous Hydroxyapatite Nanoparticles Prepared by Microwave-Assisted Co-precipitation Method. Curr Drug Deliv 2016; 13: 1123-1129