Aktuelle Neurologie 2018; 45(09): 672-689
DOI: 10.1055/a-0681-9696
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Masern – Warum ist die Impfung notwendig und wie gehe ich mit Impfgegnern um?

Measles – Why is Vaccination Necessary and How do I Deal with Opponents of Vaccination?
Thomas Weber

Subject Editor: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Prof. Dr. Thomas Weber, Hamburg.
Further Information

Publication History

Publication Date:
07 November 2018 (online)

Masern ist eine hochansteckende Erkrankung mit schweren Komplikationen. Es gibt keine wirksame Therapie; die einzige Möglichkeit, die Infektion und ihre tragischen Folgen zu vermeiden, liegt in einer Impfung. Um einen guten Schutz zu erreichen, müssen mindestens 95 % einer Bevölkerung geimpft sein. Durch Verweigerung einer Masernimpfung aus unterschiedlichsten Gründen kommt es immer wieder zu Masernausbrüchen in zahlreichen zivilisierten Ländern.

Abstract

Measles is a highly contagious disease and one infected patient may transmit it to between 4 and more than 2000 others in a totally susceptible population. Measles virus (MV) is a member of the Paramyxoviridae family as is Mumps virus. These viruses are negative single-stranded enveloped RNA viruses.

The most common serious acute complications of measles infection are pneumonia, otitis media and neurological disorders. Shortly after measles infection, acute disseminated encephalomyelitis (ADEM) may occur and has had a mortality of up to 30 % in the pre- vaccination area. ADEM has an incidence of about 2 in 1000 cases. Between one to nine months after measles an encephalitis, designated as measles inclusion body encephalitis (MIBE) as a consequence of a persistent infection may occur. MIBE has an incidence of about 1 to 3 cases in 1000 measles infections.

The most dreadful and by far most delayed consequence, however, is subacute sclerosing panencephalitis (SSPE) that may occur after less than a year up to almost 35 years after infection. It has a mortality of 100 %. Its reported incidence ranges between 3 to 11 per 100000. Isolated outbreaks in populations with insufficient herd immunity, however suggest an age dependent frequency of 1:1700 to 1:3300 in children contracting measles infection below the age of 5 years. For those infected below the age of 12 months, the incidence of SSPE may be as high as 1:609.

There is no effective antiviral therapy for measles available. The only means to avoid its dire consequences is vaccination. In order to realize complete protection, more than 95 % of a population need to be vaccinated. This percentage is sufficient to prevent infection of the rare ( < 5 %) unvaccinated individual in at least 95 % vaccinated individuals in a given population, an effect named herd immunity. In order to get a sufficient immune response, children have to be vaccinated twice, once at the age between eleven and fourteen months and later at an age between 15 and 23 months.

Vaccination against measles has helped in drastically reducing the worldwide morbidity and mortality of the disease and its complications. Despite tremendous efforts, however, the WHO program for a worldwide eradication of measles through vaccination has failed to achieve a reduction of mortality by > 90 % as compared to the level of 2000. Yet, it has been estimated that between 2000 and 2015 vaccination prevented about 20.3 million deaths. All available evidence shows a drastic reduction of the above mentioned serious immediate and delayed consequences by a factor of 1000 to more than 30000.

Due to erroneous philosophical, theological or ideological misconceptions measles outbreaks have flared up in many civilized countries. The idea of autism being a consequence of measles vaccination is a particular bad example of faked facts put into existence in the early 1990’s. Not surprisingly, the federal constitutional court recently ruled to give a parent who was favoring vaccination the sole power of justice over his child owing to its mother’s refusal to do so because of her uncorroborated fear of vaccination damage.

Kernaussagen
  • Masern ist eine hochansteckende Erkrankung. Eine infizierte Person kann zwischen 4 und mehr als 2000 weitere Menschen in einer völlig empfänglichen Bevölkerung infizieren.

  • Das Masernvirus ist wie das Mumpsvirus ein Mitglied der Familie der Paramyxoviridae. Bei beiden handelt es sich um negativsträngige, umhüllte Einzelstrang-RNA-Viren.

  • Die häufigsten schweren akuten Komplikationen von Masern sind eine Lungenentzündung, Otitis media und neurologische Erkrankungen.

  • Kurz nach Ausbruch der Maserninfektion kann eine akute disseminierte Enzephalomyelitis (ADEM) auftreten, die eine Sterblichkeit von bis zu 30 % in der Zeit vor den Impfungen hatte. Die Inzidenz einer ADEM liegt bei ungefähr 2 auf 1000 Fällen.

  • Nach etwa 1 – 9 Monaten kann es als Folge einer persistierenden Maserninfektion zu einer als Masern-Einschlusskörperchen-Enzephalitis (MIBE) bezeichneten Erkrankung kommen. Die Inzidenz einer MIBE liegt etwa bei 1 – 3 von 1000 Fällen.

  • Die schwerwiegendste und mit jahre- bis jahrzehntelanger Verzögerung auftretende Komplikation ist die subakut sklerosierende Panenzephalitis (SSPE), die zwischen weniger als 1 Jahr und bis zu fast 35 Jahren nach der Infektion auftreten kann. Ihre Sterblichkeit beträgt 100 %. Isolierte Ausbrüche in Populationen mit unzureichender Herdimmunität legen eine altersabhängige Inzidenz von etwa 1 : 1700 bis 1 : 3300 bei Kindern, die sich unter 5 Jahren infizieren, nahe. Für Kleinkinder, die vor dem 12. Lebensmonat infiziert worden sind, kann die Häufigkeit des Auftretens einer SSPE bei 1 : 609 liegen.

  • Es gibt keine wirksame Therapie der Masern. Die einzige Möglichkeit die Infektion und ihre tragischen Folgen zu vermeiden, liegt in einer Impfung. Um einen guten Schutz zu erreichen, müssen mindestens 95 % einer Bevölkerung geimpft sein. Dieser Anteil reicht aus, um eine weitere Ansteckung der wenigen (< 5 %) nicht geimpften Menschen in einer zu > 95 % immunisierten Bevölkerung zu verhindern, er wird als Herdimmunität bezeichnet.

  • Dank der Masernimpfung ließen sich weltweite Sterblichkeit und Krankheitsrate sowie die damit zusammenhängenden Komplikationen drastisch senken. Trotz enormer Anstrengungen mittels eines weltweiten Masern-Eradikationsprogramms durch Impfungen hat es die WHO jedoch nicht erreichen können, deren Sterblichkeit um > 90 % im Vergleich zum Niveau des Jahres 2000 zu senken. Dennoch hat die Impfkampagne zwischen 2000 und 2015 ca. 20,3 Millionen Todesfälle verhindert.

  • Um eine ausreichende Immunantwort zu erzielen, müssen Kinder zweimal geimpft werden. Einmal sollte die Impfung im Alter zwischen 11 und 14 Monaten, das zweite Mal im Alter von 15 bis 23 Monaten erfolgen.

  • Die Impfung führt zu einer drastischen Abnahme der schweren und mit großer zeitlicher Latenz auftretenden Komplikationen um einen Faktor von 1000 bis mehr als 30 000.

  • In Folge irriger philosophischer, theologischer oder ideologischer Vorstellungen kommt es immer wieder zu Masernausbrüchen in zahlreichen zivilisierten Ländern. Die Idee, Autismus sei eine Konsequenz einer Masernimpfung, mag als besonders abscheuliches Beispiel von „Faked Facts“ gelten, die in den frühen 1990er Jahren in die Welt gesetzt wurde.

  • Konsequenterweise hat der Bundesgerichtshof kürzlich wegen der Weigerung eines Elternteils aufgrund seiner unbegründeten Angst vor vermeintlichen Impfschäden der Vakzination zuzustimmen, dem Elternteil, der die Impfung befürwortet, die Vormundschaft für das Kind überlassen.

 
  • Literatur

  • 1 Ghebrehewet S, Thorrington D, Farmer S. et al. The economic cost of measles: Healthcare, public health and societal costs of the 2012–13 outbreak in Merseyside, UK. Vaccine 2016; 34: 1823-1831
  • 2 Rieck T, Feig M, Siedler A. et al. Aktuelles aus der KV-Surveillance - Impfquoten ausgew‰hlter Schutzimpfungen in Deutschland. Epid Bull 2018; 1: 1-14
  • 3 [Anonym] Monthly Measles and Rubella Monitoring Report. European Center for Disease Prevention and Control. 2018
  • 4 [Anonym] Measles vaccines: WHO position paper ñ April 2017. Weekly Epidemiological Record 2017; 2017: 205-228
  • 5 Bester JC. Measles and Measles Vaccination: A Review. JAMA Pediatr 2016; 170: 1209-1215
  • 6 Guerra FM, Bolotin S, Lim G. et al. The basic reproduction number (R0) of measles: a systematic review. Lancet Infect Dis 2017; 17: e420-e428
  • 7 Liu Y, Tao H, Ma F. et al. Sero-epidemiology of measles in general population in Jiangsu province of China: application of mixture models to interpret the results from a cross-sectional study. Vaccine 2011; 29: 1000-1004
  • 8 Rota PA, Moss WJ, Takeda M. et al. Measles. Nat Rev Dis Primers 2016; 2: 16049
  • 9 Gindler J, Tinker S, Markowitz L. et al. Acute measles mortality in the United States, 1987–2002. J Infect Dis 2004; 189 (Suppl. 01) 69-77
  • 10 Schönberger K, Ludwig MS, Wildner M. et al. Epidemiology of subacute sclerosing panencephalitis (SSPE) in Germany from 2003 to 2009: a risk estimation. PLoS One 2013; 8: e68909
  • 11 Wendorf KA, Winter K, Zipprich J. et al. Subacute Sclerosing Panencephalitis: The Devastating Measles Complication That Might Be More Common Than Previously Estimated. Clin Infect Dis 2017; 65: 226-232
  • 12 Jacobson RM, St Sauver JL, Finney Rutten LJ. Vaccine Hesitancy. Mayo Clin Proc 2015; 90: 1562-1568
  • 13 Slovic P. Perception of risk. Science 1987; 236: 280-285
  • 14 Barrett T. Morbillivirus infections, with special emphasis on morbilliviruses of carnivores. Vet Microbiol 1999; 69: 3-13
  • 15 Griffin DE. Measles Virus. In: Knipe DM, Howley PM, Cohen JI. et al., Hrsg. Fields Virology. Philadelphia Baltimore New York London Buenos Aires Hong Kong Sydney Tokyo: Wolter Kluwer | Lippincott Willliams & Wilkins; 2013: 1042-1069
  • 16 Moss WJ. Measles. Lancet 2017; 390: 2490-2502
  • 17 Mühlebach MD, Mateo M, Sinn PL. et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011; 480: 530-533
  • 18 Lin LT, Richardson CD. The Host Cell Receptors for Measles Virus and Their Interaction with the Viral Hemagglutinin (H) Protein. Viruses 2016; 8: pii: E250
  • 19 Griffin DE. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity. Viruses 2016; 8 DOI: 10.3390/v8100282.
  • 20 Griffin DE, Lin WW, Nelson AN. Understanding the causes and consequences of measles virus persistence. F1000Res 2018; 7: 237
  • 21 Nelson AN, Putnam N, Hauer D. et al. Evolution of T Cell Responses during Measles Virus Infection and RNA Clearance. Sci Rep 2017; 7: 11474
  • 22 Gutierrez J, Issacson RS, Koppel BS. Subacute sclerosing panencephalitis: an update. Dev Med Child Neurol 2010; 52: 901-907
  • 23 Hutse V, Van Hecke K, De Bruyn R. et al. Oral fluid for the serological and molecular diagnosis of measles. Int J Infect Dis 2010; 14: e991-997
  • 24 van Els CA, Nanan R. T cell responses in acute measles. Viral Immunol 2002; 15: 435-450
  • 25 Miller DL. Frequency of Complications of Measles, 1963. Report on a National Inquiry by the Public Health Laboratory Service in Collaboration with the Society of Medical Officers of Health. Br Med J 1964; 2: 75-78
  • 26 Enders JF, Peebles TC. Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc Soc Exp Biol Med 1954; 86: 277-286
  • 27 Hardie DR, Albertyn C, Heckmann JM. et al. Molecular characterisation of virus in the brains of patients with measles inclusion body encephalitis (MIBE). Virol J 2013; 10: 283
  • 28 Katz SL. A vaccine-preventable infectious disease kills half a million children annually. J Infect Dis 2005; 192: 1679-1680
  • 29 Katz SL, Enders JF, Holloway A. Use of Edmonston attenuated measles strain. A summary of three years' experience. Am J Dis Child 1962; 103: 340-344
  • 30 Johnson RT, Griffin DE, Hirsch RL. et al. Measles Encephalomyelitis ó Clinical and Immunologic Studies. NEJM 1984; 310: 137-141
  • 31 Nardone R, Golaszewski S, Trinka E. et al. Acute disseminated encephalomyelitis preceding measles exanthema. J Child Neurol 2011; 26: 1590-1592
  • 32 Gendelman HE, Wolinsky JS, Johnson RT. et al. Measles encephalomyelitis: lack of evidence of viral invasion of the central nervous system and quantitative study of the nature of demyelination. Ann Neurol 1984; 15: 353-360
  • 33 Karussis D, Petrou P. The spectrum of post-vaccination inflammatory CNS demyelinating syndromes. Autoimmun Rev 2014; 13: 215-224
  • 34 Comert S, Vitrinel A, Gursu HA. et al. Subacute sclerosing panencephalitis presenting as acute disseminated encephalomyelitis. Indian J Pediatr 2006; 73: 1119-1121
  • 35 Goraya J, Marks H, Khurana D. et al. Subacute sclerosing panencephalitis (SSPE) presenting as acute disseminated encephalomyelitis in a child. J Child Neurol 2009; 24: 899-903
  • 36 Shu M, Liu Q, Wang J. et al. Measles vaccine adverse events reported in the mass vaccination campaign of Sichuan province, China from 2007 to 2008. Vaccine 2011; 29: 3507-3510
  • 37 Pohl D, Alper G, Van Haren K. et al. Acute disseminated encephalomyelitis: Updates on an inflammatory CNS syndrome. Neurology 2016; 87: 38-45
  • 38 Arenz S, Fischer R, Wildner M. Measles outbreak in Germany: clinical presentation and outcome of children hospitalized for measles in 2006. Pediatr Infect Dis J 2009; 28: 1030-1032
  • 39 Risk WS, Haddad F. The variable natural history of subacute sclerosing panencephalitis: A study of 118 cases from the middle east. Archives of Neurology 1979; 36: 610-614
  • 40 Campbell H, Andrews N, Brown KE. et al. Review of the effect of measles vaccination on the epidemiology of SSPE. Int J Epidemiol 2007; 36: 1334-1348
  • 41 Vandvik B, Norrby E, Nordal HJ. et al. Oligoclonal measles virus-specific IgG antibodies isolated from cerebrospinal fluids, brain extracts, and sera from patients with subacute sclerosing panencephalitis and multiple sclerosis. Scand J Immunol 1976; 5: 979-992
  • 42 Dörries R, Ter Meulen V. Detection and identification of virus-specific, oligoclonal IgG in unconcentrated cerebrospinal fluid by immunoblot technique. J Neuroimmunol 1984; 7: 77-89
  • 43 Conrad AJ, Chiang EY, Andeen LE. et al. Quantitation of intrathecal measles virus IgG antibody synthesis rate: subacute sclerosing panencephalitis and multiple sclerosis. J Neuroimmunol 1994; 54: 99-108
  • 44 Jacobi C, Lange P, Reiber H. Quantitation of intrathecal antibodies in cerebrospinal fluid of subacute sclerosing panencephalitis, herpes simplex encephalitis and multiple sclerosis: discrimination between microorganism-driven and polyspecific immune response. J Neuroimmunol 2007; 187: 139-146
  • 45 Munoz-Alia MA, Muller CP, Russell SJ. Hemagglutinin-specific neutralization of subacute sclerosing panencephalitis viruses. PLoS One 2018; 13: e0192245
  • 46 Liebert UG, Baczko K, Budka H. et al. Restricted expression of measles virus proteins in brains from cases of subacute sclerosing panencephalitis. J Gen Virol 1986; 67 : 2435-2444
  • 47 Forcic D, Baricevic M, Zgorelec R. et al. Detection and characterization of measles virus strains in cases of subacute sclerosing panencephalitis in Croatia. Virus Res 2004; 99: 51-56
  • 48 Billeter MA, Cattaneo R, Spielhofer P. et al. Generation and properties of measles virus mutations typically associated with subacute sclerosing panencephalitis. Ann N Y Acad Sci 1994; 724: 367-377
  • 49 Kweder H, Ainouze M, Brunel J. et al. Measles Virus: Identification in the M Protein Primary Sequence of a Potential Molecular Marker for Subacute Sclerosing Panencephalitis. Adv Virol 2015; 2015: 769837
  • 50 Bellini WJ, Rota JS, Lowe LE. et al. Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than was previously recognized. J Infect Dis 2005; 192: 1686-1693
  • 51 Zilber N, Rannon L, Alter M. et al. Measles, measles vaccination, and risk of subacute sclerosing panencephalitis (SSPE). Neurology 1983; 33: 1558-1564
  • 52 Imdad A, Mayo-Wilson E, Herzer K. et al. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst Rev 2017; 3: CD008524
  • 53 Sourimant J, Plemper RK. Organization, Function, and Therapeutic Targeting of the Morbillivirus RNA-Dependent RNA Polymerase Complex. Viruses 2016; 8 DOI: 10.3390/v8090251.
  • 54 Bichon A, Aubry C, Benarous L. et al. Case report: Ribavirin and vitamin A in a severe case of measles. Medicine (Baltimore) 2017; 96: e9154
  • 55 Ortac Ersoy E, Tanriover MD, Ocal S. et al. Severe measles pneumonia in adults with respiratory failure: role of ribavirin and high-dose vitamin A. Clin Respir J 2016; 10: 673-675
  • 56 Krumm SA, Yan D, Hovingh ES. et al. An orally available, small-molecule polymerase inhibitor shows efficacy against a lethal morbillivirus infection in a large animal model. Sci Transl Med 2014; 6: 232-252
  • 57 John TJ, Samuel R. Herd immunity and herd effect: new insights and definitions. Eur J Epidemiol 2000; 16: 601-606
  • 58 Haralambieva IH, Kennedy RB, Ovsyannikova IG. et al. Variability in Humoral Immunity to Measles Vaccine: New Developments. Trends Mol Med 2015; 21: 789-801
  • 59 Wakefield AJ, Murch SH, Anthony A. et al. Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 1998; 351: 637-641
  • 60 Honda H, Shimizu Y, Rutter M. No effect of MMR withdrawal on the incidence of autism: a total population study. J Child Psychol Psychiatry 2005; 46: 572-579
  • 61 Murch SH, Anthony A, Casson DH. et al. Retraction of an interpretation. Lancet 2004; 363: 750
  • 62 Burns JF. British Medical Council Bars Doctor Who Linked Vaccine with Autism. The New York Times; 24.05.2010
  • 63 Palmeira P, Quinello C, Silveira-Lessa AL. et al. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol 2012; 2012: 985646
  • 64 Hartter HK, Oyedele OI, Dietz K. et al. Placental transfer and decay of maternally acquired antimeasles antibodies in Nigerian children. Pediatr Infect Dis J 2000; 19: 635-641
  • 65 Oyedele OO, Odemuyiwa SO, Ammerlaan W. et al. Passive immunity to measles in the breastmilk and cord blood of some nigerian subjects. J Trop Pediatr 2005; 51: 45-48
  • 66 Ashbaugh HR, Hoff NA, Doshi RH. et al. Predictors of measles vaccination coverage among children 6–59 months of age in the Democratic Republic of the Congo. Vaccine 2017; DOI: 10.1016/j.vaccine.2017.11.049.
  • 67 Thole S, Maissa A. Masernausbruch in einer Waldorfschule 2013 in Erftstadt (Nordrhein-Westfalen). Epidemiol Bulletin 2014; 33: 297-304
  • 68 Robert-Koch-Institut Md. Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2016. Berlin: Bund; 2017
  • 69 Li J, Lu L, Pang X. et al. A 60-year review on the changing epidemiology of measles in capital Beijing, China, 1951–2011. BMC Public Health 2013; 13: 986
  • 70 Clemmons NS, Gastanaduy PA, Fiebelkorn AP. et al. Measles – United States, January 4–April 2, 2015. MMWR Morb Mortal Wkly Rep 2015; 64: 373-376
  • 71 Bundesamt für Gesundheit. BAG-Bulletin 3/2018. Inneren EDd ed.. Bern: BAG; 2018: 1-44
  • 72 Greenwood KP, Hafiz R, Ware RS. et al. A systematic review of human-to-human transmission of measles vaccine virus. Vaccine 2016; 34: 2531-2536
  • 73 Schröter M, Wiechmann O, Santibanez S. et al. Konsequenzen aus dem Masernausbruch in NRW 2006. Rhein Ärzteblatt 2007; 9: 15-17
  • 74 Sugerman DE, Barskey AE, Delea MG. et al. Measles outbreak in a highly vaccinated population, San Diego, 2008: role of the intentionally undervaccinated. Pediatrics 2010; 125: 747-755
  • 75 von Pirquet C. Das Verhalten der kutanen Tuberkulin-Reaktionw‰hrend der Masern. Deutsche Med Wochenschr 1908; 34: 1297-1300
  • 76 Huber B. [100 years of allergy: Clemens von Pirquet – his concept of allergy and his basic understanding of the disease: 2: The Pirquet concept of allergy]. Wien Klin Wochenschr 2006; 118: 718-727
  • 77 Huber B. [100 years of allergy: Clemens von Pirquet – his idea of allergy and its immanent concept of disease]. Wien Klin Wochenschr 2006; 118: 573-579
  • 78 Ovsyannikova IG, Schaid DJ, Larrabee BR. et al. A large population-based association study between HLA and KIR genotypes and measles vaccine antibody responses. PLoS One 2017; 12: e0171261
  • 79 Semba RD, Munasir Z, Beeler J. et al. Reduced seroconversion to measles in infants given vitamin A with measles vaccination. Lancet 1995; 345: 1330-1332
  • 80 Bale Jr JF. Virus and Immune-Mediated Encephalitides: Epidemiology, Diagnosis, Treatment, and Prevention. Pediatr Neurol 2015; 53: 3-12
  • 81 Cortes I, Perez-Camarero S, Del Llano J. et al. Systematic review of economic evaluation analyses of available vaccines in Spain from 1990 to 2012. Vaccine 2013; 31: 3473-3484
  • 82 Lieu TA, Ray GT, Klein NP. et al. Geographic clusters in underimmunization and vaccine refusal. Pediatrics 2015; 135: 280-289
  • 83 Miller KD, Rall GF. What Kaplan-Meier survival curves don't tell us about CNS disease. J Neuroimmunol 2017; 308: 25-29
  • 84 Bundesgerichtshof. XII ZB 157/16, 2017. 03.05.2017
  • 85 Buynak EB, Weibel RE, Whitman Jr JE. et al. Combined live measles, mumps, and rubella virus vaccines. JAMA 1969; 207: 2259-2262
  • 86 Newman L. Maurice Hilleman: Microbe hunter, pioneering virologist, and the 20th century’s leading vaccinologist. Br Med J 2005; 330: 1028
  • 87 Kempe A, Daley MF, McCauley MM. et al. Prevalence of parental concerns about childhood vaccines: the experience of primary care physicians. Am J Prev Med 2011; 40: 548-555
  • 88 Ghorayshi A. How we beat measles in the Ç90s – and why it won’t work now. BuzzFeedNews. 2015
  • 89 Ellison D, Love L, Cardao ChimelliLM. et al. Chronic and subacute viral infections of the CNS. In: Ellison D, Love L, Cardao Chimelli LM. et al., eds. Neuropathology A reference text of CNS pathology. Philadelphia: Elsevier Mosby; 2013: 327-356