Dtsch Med Wochenschr 2019; 144(14): 957-963
DOI: 10.1055/a-0746-4002
Dossier
© Georg Thieme Verlag KG Stuttgart · New York

Intestinales Mikrobiom und kardiovaskuläre Erkrankungen

Gut Microbiome and Cardiovascular Disease
Hans-Michael Steffen
,
Münevver Demir
Further Information

Publication History

Publication Date:
16 July 2019 (online)

Abstract

Aging, physical activity, bodyweight and diet are well established risk factors for cardiovascular disease. For all of these factors a great impact on the intestinal microbiome has been described. The current review will discuss available data regarding the role of the gut microbiome in regulating blood pressure, vascular function and its possible contribution to atherosclerosis and heart failure.

Alter, Ausmaß körperlicher Aktivität, Körpergewicht und bestimmte Nahrungsbestandteile sind 4 anerkannte Einflussgrößen für das Auftreten kardiovaskulärer Erkrankungen. Das sind aber auch genau die Faktoren, für die ein Effekt auf das intestinale Mikrobiom beschrieben wurde. Könnte es also sein, dass die intestinale Dysbiose die eigentliche treibende Kraft hinter diesen kardiovaskulären Risikofaktoren ist?

 
  • Literatur

  • 1 Li J, Jia H, Cai X. et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 2014; 32: 834-841
  • 2 Demir M, Lang S, Steffen HM. Nonalcoholic fatty liver disease – current status and future directions. J Dig Dis 2015; 16: 541-557
  • 3 Turnbaugh PJ, Ley RE, Mahowald MA. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027-1031
  • 4 Yang T, Santisteban MM, Rodriguez V. et al. Gut dysbiosis is linked to hypertension. Hypertension 2015; 65: 1331-1340
  • 5 Miyamoto J, Kasubuchi M, Nakajima A. et al. The role of short-chain fatty acid on blood pressure regulation. Curr Opin Nephrol Hypertens 2016; 25: 379-383
  • 6 Marques FZ, Nelson E, Chu PY. et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation 2017; 135: 964-977
  • 7 Bartolomaeus H, Balogh A, Yakoub M. et al. The Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage. Circulation 2018. doi:10.1161/CIRCULATIONAHA.118.036652. [Epub ahead of print]
  • 8 Juraschek SP, Bower JK, Selvin E. et al. Plasma lactate and incident hypertension in the atherosclerosis risk in communities study. Am J Hypertens 2015; 28: 216-224
  • 9 Qi YF, Aranda JM, Rodriguez V. et al. Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension – a case report. Int J Cardiol 2015; 201: 157-158
  • 10 Wilck N, Matus MG, Kearney SM. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551: 585-589
  • 11 Khalesi S, Sun J, Buys N. et al. Effect of probiotics on blood pressure. A systematic review and meta-analysis of randomized, controlled trials. Hypertension 2014; 64: 897-903
  • 12 Li J, Zhao F, Wang Y. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017; 5: 14 . doi:10.1186/s40168-016-0222-x
  • 13 Lam V, Su J, Koprowski S. et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 2012; 26: 1727-1735
  • 14 Andraws R, Berger JS, Brown DL. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA 2005; 293: 2641-2547
  • 15 Jie Z, Xia H, Zhong SL. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 2017; 8: 845 . doi:10.1038/s41467-017-00900-1
  • 16 Li J, Lin S, Vanhoutte PM. et al. Akkermansia munciniphlia protects aganst athersosclerosis by preventing metabolic endotoxinemia-induced inflammation in Apoe-/- mice. Circulation 2016; 133: 2434-2446
  • 17 Tang WHW, Wang Z, Levison BS. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368: 1575-1584
  • 18 Heianza Y, Ma W, Manson JE. et al. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc 2017; 6: e004947 . doi:10.1161/JAHA.116.004947
  • 19 Koeth RA, Wang Z, Levison BS. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19: 576-585
  • 20 Gregory JC, Buffa JA, Org E. et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem 2015; 290: 5647-5660
  • 21 Zhu W, Gregory JC, Org E. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016; 165: 111-124
  • 22 Wang Z, Roberts AB, Buffa JA. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015; 163: 1585-1595
  • 23 Koeth RA, Lam-Galvez BR, Kirsop J. et al. L-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest 2019; 129: 373-387
  • 24 Wang Z, Bergeron N, Levison BS. et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J 2019; 40: 583-594
  • 25 Niebauer J, Volk HD, Kemp M. et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 1999; 353: 1838-1842
  • 26 Sandek A, Bauditz J, Swidsinski A. et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol 2007; 50: 1561-1569
  • 27 Pasini E, Aquilani R, Testa C. et al. Pathogenic gut flora in patients with chronic heart failure. J Am Coll Cardiol HF 2016; 4: 220-227
  • 28 Luedde M, Winkler T, Heinsen FA. et al. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail 2017; 4: 282-290
  • 29 Tang WHW, Wang Z, Fan Y. et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 2014; 64: 1908-1914
  • 30 Organ CL, Otsuka H, Bhushan S. et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail 2016; 9: e002314 . doi:10.1161/CIRCHEARTFAILURE.115.002314