Suchttherapie 2019; 20(01): 9-18
DOI: 10.1055/a-0765-8510
Schwerpunktthema
© Georg Thieme Verlag KG Stuttgart · New York

Sucht und Adipositas: Können Nahrungsmittel abhängig machen?

Addiction and Obesity: Is Food Addictive?
J. Malte Bumb
1   Klinik für Abhängiges Verhalten und Suchtmedizin, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim
,
Tillmann Weber
2   Median Klinik Wilhelmsheim, Oppenweiler
,
Falk Kiefer
1   Klinik für Abhängiges Verhalten und Suchtmedizin, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim
› Author Affiliations
Further Information

Publication History

Publication Date:
17 December 2018 (online)

Zusammenfassung

Die weltweite Prävalenz von Übergewicht und Adipositas nimmt in den letzten Jahren sowohl bei Kindern und Jugendlichen als auch bei Erwachsenen stetig zu. Hiermit verbunden sind zahlreiche Folgeerkrankungen, die zu einer reduzierten Lebensqualität, einer reduzierten Lebenserwartung und hohen direkten und indirekten Gesundheitskosten führen. Ein zentraler Aspekt der aktuellen Forschung beschäftigt sich mit der Frage, ob abhängige Verhaltensweisen im Zusammenhang mit dem derzeit bestehenden Überangebot an billiger, „schmackhafter“ (hoher Anteil an Zucker, Fett, Salz oder an Lebensmittelzusatzstoffen wie Geschmacksverstärkern) Nahrung zur steigenden Prävalenz der Adipositas beitragen könnten. Eine Verbesserung des Verständnisses der Wirkung bestimmter Nahrungsbestandteile auf Prozesse von Präferenz und Verhaltenssteuerung birgt die Hoffnung, neue und effizientere Therapieformen entwickeln zu können. Um diesen aktuellen Sachverhalt näher zu beleuchten, führten die Autoren eine selektive PubMed Recherche zu den Themen „obesity AND addiction“ durch. Aus der Literaturrecherche ergeben sich Hinweise für Gemeinsamkeiten in Prozessen und Regelkreisläufen, die sowohl bei der Entstehung und der Aufrechterhaltung der Adipositas als auch von Abhängigkeitserkrankungen eine Rolle spielen. Konkret sind hier phänomenologische und klinische, neuroendokrinologische und bildgebende Aspekte sowie Gemeinsamkeiten, bestimmte Transmittersysteme betreffend, zu nennen. Bei der Ergänzung der etablierten und der Entwicklung zukünftiger, innovativer und multi-modaler Therapieansätze sollten Suchtmechanismen und motivationale Aspekte der Nahrungsaufnahme bei der Behandlung der Adipositas daher Beachtung finden.

Abstract

Over the last few years, the worldwide prevalence of obesity has been increasing amongst children, adolescents and adults. Moreover, obesity related diseases lead to reduced quality of life, reduced life expectancy as well as high direct and indirect health care costs. The question whether this “obesity epidemic” might be associated to reward-related or addictive behaviors, which again are linked to the high and cheap availability of palatable foods (i. e. high in fat, sugar, salt and flavor-enhancing food additives) is crucial for obesity research. The development of modern and efficacious treatment approaches might be substantially facilitated if researchers would understand better how certain foods impact on processes linked to appetitive mechanisms and behavioral control. Addressing these issues, the authors selectively searched PubMed using „obesity AND addiction“ as keywords. Literature research revealed that obesity and substance use disorders share common features regarding mechanisms and feedback cycles associated to the development and the maintenance of both diseases. In fact, these features refer to phenomenological, clinical, neuroendocrinological and imaging aspects, as well as to certain neurotransmitter systems. Consequently, addictive and appetitive behaviors related to food intake should be considered when developing prospective, innovative and multi-modal approaches for the treatment of obesity.

 
  • Literatur

  • 1 WHO. Obesity and overweight. World Health Organization; 2018
  • 2 RisC N. Mean BMI, Prevalences of adult BMI categories, Prevalences of child and adolescent BMI categories, Number of children and adolescents in BMI categories. Non-communicable Diseases Risc Factor Collaboration 2017
  • 3 Eurostat. Overweight and obesity – BMI statistics from the European health interview survey 2014. The European Union; 2017
  • 4 aerzteblatt.de. Studie widerlegt Adipositas-Paradoxon: Sterberisiko steigt bereits bei leichtem Übergewicht. Ärzteblatt online; 2016
  • 5 Frellick M. AMA declares obesity a disease. Medscape 2018
  • 6 Berthoud HR, Munzberg H, Morrison CD. Blaming the Brain for Obesity: Integration of Hedonic and Homeostatic Mechanisms. Gastroenterology 2017; 152: 1728-1738
  • 7 Heymsfield SB, Wadden TA. Mechanisms, Pathophysiology, and Management of Obesity. N Engl J Med 2017; 376: 1492
  • 8 Farooqi IS, Keogh JM, Yeo GS. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003; 348: 1085-1095
  • 9 Michaelides M, Thanos PK, Volkow ND. et al. Translational neuroimaging in drug addiction and obesity. ILAR J 2012; 53: 59-68
  • 10 Volkow ND, Wang GJ, Tomasi D. et al. The addictive dimensionality of obesity. Biol Psychiatry 2013; 73: 811-818
  • 11 Volkow ND, Wang GJ, Tomasi D. et al. Obesity and addiction: neurobiological overlaps. Obes Rev 2013; 14: 2-18
  • 12 Volkow ND, Wise RA. How can drug addiction help us understand obesity?. Nat Neurosci 2005; 8: 555-560
  • 13 Gearhardt AN, Grilo CM, DiLeone RJ. et al. Can food be addictive? Public health and policy implications. Addiction 2011; 106: 1208-1212
  • 14 Hoch T, Kreitz S, Gaffling S. et al. Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas. Sci Rep 2015; 5: 10041
  • 15 Collaboration NCDRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016; 387: 1377-1396
  • 16 Thaler JP, Guyenet SJ, Dorfman MD. et al. Hypothalamic inflammation: marker or mechanism of obesity pathogenesis?. Diabetes 2013; 62: 2629-2634
  • 17 Peters A. Die Selfish-Brain-Theorie. Gynäkologische. Endokrinologie 2017; 15: 103-107
  • 18 Krieger M. Über die Atrophie der menschlichen Organe bei Inanition [On the atrophy of human organs in inanition]. Zeitschrift für angewandte Anatomie 1921; 87-134
  • 19 Peters A. Selfish Brain-Theorie: Adipositas und Diabetes besser verstehen. URL: http://www.selfish-brain.org/press_de/Selfish-Brain-Theorie_Hintergrundbericht.pdf
  • 20 Organisation WH. International Statistical Classification of Diseases and Related Health Problems – (ICD-10). Geneva: WHO; 1992
  • 21 Batra A, Muller CA, Mann K. et al. Alcohol Dependence and Harmful Use of Alcohol. Dtsch Arztebl Int 2016; 113: 301-310
  • 22 Schulte EM, Potenza MN, Gearhardt AN. A commentary on the “eating addiction” versus “food addiction” perspectives on addictive-like food consumption. Appetite 2017; 115: 9-15
  • 23 Hoch T, Pischetsrieder M, Hess A. Snack food intake in ad libitum fed rats is triggered by the combination of fat and carbohydrates. Front Psychol 2014; 5: 250
  • 24 Davis C, Loxton NJ, Levitan RD. et al. ‘Food addiction’ and its association with a dopaminergic multilocus genetic profile. Physiol Behav 2013; 118: 63-69
  • 25 Davis C, Levitan RD, Kaplan AS. et al. Food cravings, appetite, and snack-food consumption in response to a psychomotor stimulant drug: the moderating effect of “food-addiction”. Front Psychol 2014; 5: 403
  • 26 Davis C, Curtis C, Levitan RD. et al. Evidence that ‘food addiction’ is a valid phenotype of obesity. Appetite 2011; 57: 711-717
  • 27 Gearhardt AN, Corbin WR, Brownell KD. Preliminary validation of the Yale Food Addiction Scale. Appetite 2009; 52: 430-436
  • 28 Feldstein Ewing SW, Claus ED, Hudson KA. et al. Overweight adolescents’ brain response to sweetened beverages mirrors addiction pathways. Brain Imaging Behav 2017; 11: 925-935
  • 29 Seage CH, Lee M. Do disinhibited eaters pay increased attention to food cues?. Appetite 2017; 108: 151-155
  • 30 Burmeister JM, Hinman N, Koball A. et al. Food addiction in adults seeking weight loss treatment. Implications for psychosocial health and weight loss. Appetite 2013; 60: 103-110
  • 31 Leigh SJ, Morris MJ. The role of reward circuitry and food addiction in the obesity epidemic: An update. Biol Psychol 2018; 131: 31-42
  • 32 Avena NM, Bocarsly ME, Rada P. et al. After daily bingeing on a sucrose solution, food deprivation induces anxiety and accumbens dopamine/acetylcholine imbalance. Physiol Behav 2008; 94: 309-315
  • 33 Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 2008; 32: 20-39
  • 34 Colantuoni C, Rada P, McCarthy J. et al. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Res 2002; 10: 478-488
  • 35 Pickering C, Alsio J, Hulting AL. et al. Withdrawal from free-choice high-fat high-sugar diet induces craving only in obesity-prone animals. Psychopharmacology (Berl) 2009; 204: 431-443
  • 36 Sharma S, Fernandes MF, Fulton S. Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal. Int J Obes (Lond) 2013; 37: 1183-1191
  • 37 Ifland JR, Preuss HG, Marcus MT. et al. Refined food addiction: a classic substance use disorder. Med Hypotheses 2009; 72: 518-526
  • 38 Lent MR, Swencionis C. Addictive personality and maladaptive eating behaviors in adults seeking bariatric surgery. Eat Behav 2012; 13: 67-70
  • 39 Ziauddeen H, Alonso-Alonso M, Hill JO. et al. Obesity and the neurocognitive basis of food reward and the control of intake. Adv Nutr 2015; 6: 474-486
  • 40 Ziauddeen H, Farooqi IS, Fletcher PC. Obesity and the brain: how convincing is the addiction model?. Nat Rev Neurosci 2012; 13: 279-286
  • 41 Geliebter A, Yahav EK, Gluck ME. et al. Gastric capacity, test meal intake, and appetitive hormones in binge eating disorder. Physiol Behav 2004; 81: 735-740
  • 42 Corsica JA, Spring BJ. Carbohydrate craving: a double-blind, placebo-controlled test of the self-medication hypothesis. Eat Behav 2008; 9: 447-454
  • 43 Spring B, Schneider K, Smith M. et al. Abuse potential of carbohydrates for overweight carbohydrate cravers. Psychopharmacology (Berl) 2008; 197: 637-647
  • 44 Rogers PJ, Brunstrom JM. Appetite and energy balancing. Physiol Behav 2016; 164: 465-471
  • 45 Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 2010; 13: 635-641
  • 46 Gearhardt AN, Corbin WR, Brownell KD. Development of the Yale Food Addiction Scale Version 2.0. Psychol Addict Behav 2016; 30: 113-121
  • 47 Meule A, Gearhardt AN. Food addiction in the light of DSM-5. Nutrients 2014; 6: 3653-3671
  • 48 Meule A, Muller A, Gearhardt AN. et al. German version of the Yale Food Addiction Scale 2.0: Prevalence and correlates of ‘food addiction’ in students and obese individuals. Appetite 2017; 115: 54-61
  • 49 Kiefer F, Grosshans M. What can addiction research contribute towards the understanding of obesity?. Nervenarzt 2009; 80: 1040-1049
  • 50 Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci 2017; 18: 741-752
  • 51 Blum K, Braverman ER, Wood RC. et al. Increased prevalence of the Taq I A1 allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder: a preliminary report. Pharmacogenetics 1996; 6: 297-305
  • 52 Stice E, Spoor S, Bohon C. et al. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 2008; 322: 449-452
  • 53 Wang GJ, Volkow ND, Logan J. et al. Brain dopamine and obesity. Lancet 2001; 357: 354-357
  • 54 Volkow ND, Wang GJ, Telang F. et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 2008; 42: 1537-1543
  • 55 Hansson AC, Koopmann A, Uhrig S. et al. Oxytocin Reduces Alcohol Cue-Reactivity in Alcohol-Dependent Rats and Humans. Neuropsychopharmacology 2018; 43: 1235-1246
  • 56 Berridge KC, Robinson TE. Liking, wanting, and the incentive-sensitization theory of addiction. Am Psychol 2016; 71: 670-679
  • 57 Di Chiara G, Bassareo V. Reward system and addiction: what dopamine does and doesn't do. Curr Opin Pharmacol 2007; 7: 69-76
  • 58 Di Chiara G, Tanda G, Bassareo V. et al. Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine. Ann N Y Acad Sci 1999; 877: 461-485
  • 59 Bassareo V, Di Chiara G. Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience 1999; 89: 637-641
  • 60 Bassareo V, Di Chiara G. Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 1997; 17: 851-861
  • 61 Ren X, Ferreira JG, Zhou L. et al. Nutrient selection in the absence of taste receptor signaling. J Neurosci 2010; 30: 8012-8023
  • 62 Ferreira JG, Tellez LA, Ren X. et al. Regulation of fat intake in the absence of flavour signalling. J Physiol 2012; 590: 953-972
  • 63 Tellez LA, Ferreira JG, Medina S. et al. Flavor-independent maintenance, extinction, and reinstatement of fat self-administration in mice. Biol Psychiatry 2013; 73: 851-859
  • 64 de Araujo IE, Ferreira JG, Tellez LA. et al. The gut-brain dopamine axis: a regulatory system for caloric intake. Physiol Behav 2012; 106: 394-399
  • 65 Melis T, Succu S, Sanna F. et al. The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neurosci Lett 2007; 419: 231-235
  • 66 Geiger BM, Haburcak M, Avena NM. et al. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 2009; 159: 1193-1199
  • 67 Andreotti F, Crea F, Hennekens CH. Mechanisms, Pathophysiology, and Management of Obesity. N Engl J Med 2017; 376: 1490-1491
  • 68 Boswell RG, Kober H. Food cue reactivity and craving predict eating and weight gain: a meta-analytic review. Obes Rev 2016; 17: 159-177
  • 69 Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 2011; 15: 37-46
  • 70 Ersche KD, Turton AJ, Croudace T. et al. Who Do You Think Is in Control in Addiction? A Pilot Study on Drug-related Locus of Control Beliefs. Addict Disord Their Treat 2012; 11: 173-223
  • 71 Schag K, Schonleber J, Teufel M. et al. Food-related impulsivity in obesity and binge eating disorder – a systematic review. Obes Rev 2013; 14: 477-495
  • 72 Guerrieri R, Nederkoorn C, Jansen A. Disinhibition is easier learned than inhibition. The effects of (dis)inhibition training on food intake. Appetite 2012; 59: 96-99
  • 73 Grosshans M, Vollmert C, Vollstadt-Klein S. et al. Association of leptin with food cue-induced activation in human reward pathways. Arch Gen Psychiatry 2012; 69: 529-537
  • 74 Rothemund Y, Preuschhof C, Bohner G. et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 2007; 37: 410-421
  • 75 Noori HR, Cosa Linan A, Spanagel R. Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: A comprehensive meta-analysis. Eur Neuropsychopharmacol 2016; 26: 1419-1430
  • 76 Monteiro MP, Batterham RL. The Importance of the Gastrointestinal Tract in Controlling Food Intake and Regulating Energy Balance. Gastroenterology 2017; 152: 1707-1717
  • 77 Koopmann A, Schuster R, Kiefer F. The impact of the appetite-regulating, orexigenic peptide ghrelin on alcohol use disorders: A systematic review of preclinical and clinical data. Biol Psychol 2018; 131: 14-30
  • 78 Grosshans M, Loeber S, Kiefer F. Implications from addiction research towards the understanding and treatment of obesity. Addict Biol 2011; 16: 189-198
  • 79 Farokhnia M, Grodin EN, Lee MR. et al. Exogenous ghrelin administration increases alcohol self-administration and modulates brain functional activity in heavy-drinking alcohol-dependent individuals. Mol Psychiatry 2017; DOI: 10.1038/mp.2017.226.
  • 80 Malik S, McGlone F, Bedrossian D. et al. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 2008; 7: 400-409
  • 81 Koopmann A, Lippmann K, Schuster R. et al. Drinking water to reduce alcohol craving? A randomized controlled study on the impact of ghrelin in mediating the effects of forced water intake in alcohol addiction. Psychoneuroendocrinology 2017; 85: 56-62
  • 82 Fulton S, Pissios P, Manchon RP. et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 2006; 51: 811-822
  • 83 Haass-Koffler CL, Aoun EG, Swift RM. et al. Leptin levels are reduced by intravenous ghrelin administration and correlated with cue-induced alcohol craving. Transl Psychiatry 2015; 5: e646
  • 84 Farooqi IS, Bullmore E, Keogh J. et al. Leptin regulates striatal regions and human eating behavior. Science 2007; 317: 1355
  • 85 Baicy K, London ED, Monterosso J. et al. Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proceedings of the National Academy of Sciences of the United States of America 2007; 104: 18276-18279
  • 86 Bluml V, Kapusta N, Vyssoki B. et al. Relationship between substance use and body mass index in young males. Am J Addict 2012; 21: 72-77
  • 87 Simon GE, Von Korff M, Saunders K. et al. Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry 2006; 63: 824-830
  • 88 Blendy JA, Strasser A, Walters CL. et al. Reduced nicotine reward in obesity: cross-comparison in human and mouse. Psychopharmacology (Berl) 2005; 180: 306-315
  • 89 Cook JB, Hendrickson LM, Garwood GM. et al. Junk food diet-induced obesity increases D2 receptor autoinhibition in the ventral tegmental area and reduces ethanol drinking. PLoS One 2017; 12: e0183685
  • 90 Warren M, Frost-Pineda K, Gold M. Body mass index and marijuana use. J Addict Dis 2005; 24: 95-100
  • 91 Coccurello R, Maccarrone M. Hedonic Eating and the “Delicious Circle”: From Lipid-Derived Mediators to Brain Dopamine and Back. Front Neurosci 2018; 12: 271
  • 92 Davis JF, Choi DL, Benoit SC. Insulin, leptin and reward. Trends Endocrinol Metab 2010; 21: 68-74
  • 93 Kohno D, Suyama S, Yada T. Leptin transiently antagonizes ghrelin and long-lastingly orexin in regulation of Ca2+ signaling in neuropeptide Y neurons of the arcuate nucleus. World J Gastroenterol 2008; 14: 6347-6354
  • 94 Narita M, Nagumo Y, Hashimoto S. et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 2006; 26: 398-405
  • 95 Lawrence AJ, Cowen MS, Yang HJ. et al. The orexin system regulates alcohol-seeking in rats. Br J Pharmacol 2006; 148: 752-759
  • 96 Choi DL, Davis JF, Fitzgerald ME. et al. The role of orexin-A in food motivation, reward-based feeding behavior and food-induced neuronal activation in rats. Neuroscience 2010; 167: 11-20
  • 97 Opland DM, Leinninger GM, Myers Jr MG. Modulation of the mesolimbic dopamine system by leptin. Brain Res 2010; 1350: 65-70
  • 98 van der Plasse G, van Zessen R, Luijendijk MC. et al. Modulation of cue-induced firing of ventral tegmental area dopamine neurons by leptin and ghrelin. Int J Obes (Lond) 2015; 39: 1742-1749
  • 99 Ziauddeen H, Fletcher PC. Is food addiction a valid and useful concept?. Obes Rev 2013; 14: 19-28