Aktuelle Rheumatologie 2019; 44(03): 186-198
DOI: 10.1055/a-0884-2863
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Differenzialdiagnostik intermittierender Fieberschübe im Kindesalter

Differential Diagnosis of Intermittent Fever in Childhood
Gerd Horneff
1   Asklepios Klinik Sankt Augustin, Zentrum für Neonatologie und Allgemeine Pädiatrie, Sankt Augustin
2   Abteilung Pädiatrie, Medizinische Fakultät, Universität Köln, Köln
› Author Affiliations
Further Information

Publication History

Publication Date:
19 June 2019 (online)

Zusammenfassung

Fiebersyndrome und autoinflammatorische Erkrankungen sind eine Gruppe von erblichen und nicht-erblichen Erkrankungen des angeborenen Immunsystems, gekennzeichnet durch wiederkehrende Entzündungen, scheinbar grundlos, in regelmäßigen oder unregelmäßigen Zeitabständen und Manifestationen an Haut, Schleimhäuten, Gelenken, Knochen, Magen-Darm-Trakt aber auch Gefäßen und ZNS. Amyloidose und andere mögliche schwere langfristige Komplikationen sind von Bedeutung. Fortschritte in der Genetik und Molekularbiologie haben das Verständnis der Pathogenese dieser Erkrankungen verbessert. Pathogenetisch sind unterschiedliche Entzündungswege, wie Interleukin-1-, Interferon-, NF-Kappa-B-vermittelte oder andere Wege bedeutsam. Der Zweck dieser Darstellung ist es nicht nur das Bewusstsein für die mittlerweile zahlreichen autoinflammatorischen Syndrome zu stärken, sondern auch differentialdiagnostisch Wege aufzuzeigen. Die finale Diagnose wird im Zeitalter der Genetik sicher häufig genetisch verifiziert, doch gibt die Klinik wichtige Hinweise auf die wahrscheinliche Diagnose. Leitsymptom ist das wiederkehrende Fieber, doch kann dies bei zahlreichen autoinflammatorischen Syndromen fehlen. Haut- und Schleimhautmanifestationen, psoriatiforme und pustulöse, sowie Urtikaria, eine Livedo oder Knoten können wegweisend sein.

Abstract

Fever syndromes and autoinflammatory diseases are a group of hereditary and non-hereditary disorders of the innate immune system, characterised by recurrent inflammation, apparently groundless, occurring at regular or irregular intervals and manifesting themselves on the skin and mucous membranes, in the joints, bones, gastrointestinal tract, vessels, and the CNS. Amyloidosis and other potential long-term complications have to be considered. Advances in genetics and molecular biology have improved the understanding of the pathogenesis of these diseases. Pathogenetically, different inflammatory pathways are important, e. g. interleukin-1, interferon, NF-Kappa-B-mediated or other pathways. The purpose of this presentation is not only to increase awareness of the numerous autoinflammatory syndromes, but also to show differential diagnostic pathways. In the age of genetics, the final diagnosis is often verified genetically. However, the clinical presentation provides important indications of the probable diagnosis. The main symptom is recurrent fever, but this may be absent in numerous autoinflammatory syndromes. Skin and mucosal manifestations, psoriatic and pustular, as well as urticaria, livedo or nodules may lead the way to the correct diagnosis.

 
  • Literatur

  • 1 de Jesus AA, Canna SW, Liu Y. et al. Molecular Mechanisms in Genetically Defined Autoinflammatory Diseases: Disorders of Amplified Danger Signaling. Annu Rev Immunol 2015; 33: 823-874
  • 2 Sag E, Bilginer Y, Ozen S. Autoinflammatory Diseases with Periodic Fevers. Curr Rheumatol Rep 2017; 19: 41 doi:10.1007/s11926-017-0670-8
  • 3 Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009; 27: 519-550
  • 4 Mariathasan S, Newton K, Monack DM. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 2004; 430: 213-218
  • 5 Feder HM, Salazar JC. A clinical review of 105 patients with PFAPA. Acta Paediatr 2010; 99: 178-184
  • 6 Cochard M, Clet J, Le L. et al. PFAPA syndrome is not a sporadic disease. Rheumatology (Oxford) 2010; 49: 1984-1987
  • 7 Tasher D, Stein M, Dalal I. et al. Colchicine prophylaxis for frequent periodic fever, aphthous stomatitis, pharyngitis and adenitis episodes. Acta Paediatr 2008; 97: 1090-1092
  • 8 Renko M, Salo E, Putto-Laurila A. et al. A randomized, controlled trial of tonsillectomy in periodic fever, aphthous stomatitis, pharyngitis, and adenitis syndrome. J Pediatr 2007; 151: 289-292
  • 9 French FMF Consortium. A candidate gene for familial Mediterranean fever. Nat Genet 1997; 17: 25-31
  • 10 Omenetti A, Carta S, Delfino L. et al. Increased NLRP3-dependent interleukin 1β secretion in patients with familial Mediterranean fever: correlation with MEFV genotype. Ann Rheum Dis 2014; 73: 462-469
  • 11 Yalçinkaya F, Ozen S, Ozçakar ZB. et al. A new set of criteria for the diagnosis of familial Mediterranean fever in childhood. Rheumatology (Oxford) 2009; 48: 395-398
  • 12 Cuisset L, Drenth JP, Simon A. et al. Molecular analysis of MVK mutations and enzymatic activity in hyper-IgD and periodic fever syndrome. Eur J Hum Genet 2001; 9: 260-266
  • 13 Mandey SH, Kuijk LM, Frenkel J. et al. A role for geranylgeranylation in interleukin-1β secretion. Arthritis Rheumatol 2006; 54: 3690-3695
  • 14 van der Hilst JC, Bodar EJ, Barron KS. et al. Long-term follow-up, clinical features, and quality of life in a series of 103 patients with hyperimmunoglobulinemia D syndrome. Medicine (Baltimore) 2008; 87: 301-310
  • 15 De Benedetti F, Gattorno M, Anton J. et al. Canakinumab for the Treatment of Autoinflammatory Recurrent Fever Syndromes. N Engl J Med 2018; 378: 1908-1919
  • 16 Hull KM, Drewe E, Aksentijevich I. et al. The TNF receptor-associated periodic syndrome (TRAPS): emerging concepts of an autoinflammatory disorder. Medicine 2002; 81: 349-368
  • 17 Goldbach-Mansky R, Dailey NJ, Canna SW. et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 2006; 355: 581-589
  • 18 Hoffman HM, Mueller JL, Broide DH. et al. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 2001; 29: 301-305
  • 19 Aksentijevich I, Masters SL, Ferguson PJ. et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med 2009; 360: 2426-2437
  • 20 Tauber M, Bal E, Pei XY. L36RN Mutations Affect Protein Expression and Function: A Basis for Genotype-Phenotype Correlation in Pustular Diseases. J Invest Dermatol 2016; 136: 1811-1819
  • 21 Marrakchi S, Guigue P, Renshaw BR. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med 2011; 365: 620-628
  • 22 Almeida de Jesus A, Goldbach-Mansky R. Monogenic autoinflammatory diseases: concept and clinical manifestations. Clin Immunol 2013; 147: 155-174
  • 23 Ferguson PJ, Chen S, Tayeh MK. et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet 2005; 42: 551-557
  • 24 Rose CD, Arostegui JI, Martin TM. et al. NOD2-associated pediatric granulomatous arthritis, an expanding phenotype: study of an international registry and a national cohort in Spain. Arthritis Rheumatol. 2009; 60: 1797-1803
  • 25 Ogura Y, Inohara N, Benito A. et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J Biol Chem 2001; 276: 4812-4818
  • 26 Simonini G, Xu Z, Caputo R. et al. Clinical and transcriptional response to the long-acting interleukin-1 blocker canakinumab in Blau syndrome-related uveitis. Arthritis Rheum 2012; 65: 513-518
  • 27 Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014; 14: 36-49
  • 28 Liu Y, Jesus AA, Marrero B. et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med 2014; 371: 507-518
  • 29 Liu Y, Ramot Y, Torrelo A. et al. Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum 2012; 64: 895-907
  • 30 Arima K, Kinoshita A, Mishima H. et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. PNAS 2011; 108: 14914-14919
  • 31 Kluk J, Rustin M, Brogan PA. et al. Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature syndrome: a report of a novel mutation and review of the literature. Br J Dermatol 2014; 170: 215-217
  • 32 Agarwal AK, Xing C, DeMartino GN. et al. PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet 2010; 87: 866-872 doi:10.1016/j.ajhg.2010.10.031
  • 33 Briggs TA, Rice GI, Daly S. et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 2011; 43: 127-131
  • 34 Volpi S, Tsui J, Mariani M. et al. Type I interferon pathway activation in COPA syndrome. Clin Immunol 2018; 187: 33-36
  • 35 Taveira-DaSilva AM, Markello TC, Kleiner DE. et al. Expanding the phenotype of COPA syndrome: a kindred with typical and atypical features. J Med Genet 2018; Nov 1. pii: jmedgenet-2018-105560 DOI: 10.1136/jmedgenet-2018-105560.. [Epub ahead of print]
  • 36 Zhou Q, Lee GS, Brady J. et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 2012; 91: 713-720
  • 37 Canna SW, de Jesus AA, Gouni S. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014; 46: 1140-1146
  • 38 Demidowich AP, Freeman AF, Kuhns DB. et al. Brief report: genotype, phenotype, and clinical course in five patients with PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne). Arthritis Rheumatol 2012; 64: 2022-2027
  • 39 Zhou Q, Wang H, Schwartz DM. et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet 2016; 48: 67-73
  • 40 Navon Elkan P, Pierce SB, Segel R. et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 2014; 370: 921-931
  • 41 Zhou Q, Yang D, Ombrello AK. et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 2014; 370: 911-920
  • 42 Meyts I, Aksentijevich I. Deficiency of Adenosine Deaminase 2 (DADA2): Updates on the Phenotype, Genetics, Pathogenesis, and Treatment. Journal of Clinical Immunology 2018; 38: 569-578
  • 43 Nanthapisal S, Murphy C, Omoyinmi E. et al. Deficiency of adenosine deaminase type 2: a description of phenotype and genotype in fifteen cases. Arthritis Rheumatol 2016; 68: 2314-2322
  • 44 Ombrello A, Stone D, Hoffmann P. et al. The deficiency of adenosine deaminase type 2-results of therapeutic intervention. Pediatric Rheumatology 2015; 13 (Suppl. 01) O40
  • 45 Thomas KT, Feder HM Jr., Lawton AR, Edwards KM. Periodic fever syndrome in children. J Pediatr 1999; 135: 15-21