Tierarztl Prax Ausg K Kleintiere Heimtiere 2019; 47(05): 313-320
DOI: 10.1055/a-0987-8212
Originalartikel
© Georg Thieme Verlag KG Stuttgart · New York

Nachweis der BRAF-Mutation bei kaninen Prostataerkrankungen

Detection of BRAF mutation in canine prostatic diseases
Julia M. Grassinger
1   LABOKLIN GmbH & Co. KG, Bad Kissingen
,
Heike Aupperle-Lellbach
1   LABOKLIN GmbH & Co. KG, Bad Kissingen
,
Hanna Erhard
1   LABOKLIN GmbH & Co. KG, Bad Kissingen
,
Sophie Merz
2   Institut für Tierpathologie, Freie Universität Berlin
,
Robert Klopfleisch
2   Institut für Tierpathologie, Freie Universität Berlin
› Author Affiliations
Further Information

Publication History

30 April 2019

04 July 2019

Publication Date:
18 October 2019 (online)

Zusammenfassung

Gegenstand und Ziel In der Literatur konnte in 80 % der Bioptate kaniner Prostatakarzinome (PCa) die BRAF-Mutation nachgewiesen werden. Ziele dieser Arbeit waren, kanine Prostataproben aus dem eigenen Tiergut hinsichtlich des Auftretens der BRAF-Mutation zu untersuchen sowie die Spezifität und Sensitivität des Tests zu evaluieren. Außerdem sollte die Methodik für zytologische Ausstriche etabliert und die Korrelation zwischen der BRAF-Mutation und dem histologischen Bild kaniner PCa dargestellt werden.

Material und Methoden Bioptate (n = 70) und Feinnadelaspirate (n = 17) der Prostata von 87 Hunden wurden histologisch oder zytologisch untersucht. Die Einteilung der Erkrankungen erfolgte wie in der Literatur beschrieben in benigne Prostatahyperplasie (BPH, n = 22), Prostatitis (n = 14), Plattenepithelmetaplasie (PM, n = 2), Atrophie nach Kastration (n = 3) und PCa (n = 46; davon zytologisch nachgewiesen n = 11). Für die PCa wurde der Gleason-Score ermittelt. Zur DNA-Isolierung dienten kommerzielle Testkits. Das Exon 15 wurde mit dem TaqMan® SNP Assay untersucht. Die Spezifität und Sensitivität des Tests wurden berechnet.

Ergebnisse Ein Gleason-Score von 6 und 7 ergab sich in je einem Fall, von 8 bis 10 bei 33 der PCa. Aus allen Proben ließ sich ausreichend DNA isolieren. Die BRAF-Mutation war in 28/46 PCa nachweisbar (Sensitivität 61 %). Bei keinem Hund mit BPH, Prostatitis, PM oder Atrophie wurde die BRAF-Mutation festgestellt (Spezifität 100 %). Durch die BRAF-Mutation verursachte PCa wiesen einen signifikant (p = 0,002) höheren Gleason-Score auf als PCa ohne diese Mutation.

Schlussfolgerung und klinische Relevanz Die Untersuchung auf das Vorliegen der BRAF-Variante V595E ist ein hochspezifisches Verfahren, mit dem sich in histologisch und zytologisch fraglichen Fällen die Verdachtsdiagnose eines PCa absichern lässt. Durch die BRAF-Mutation verursachte PCa zeigen histologisch stärker ausgeprägte Malignitätskriterien als nicht durch diese Mutation bedingte. Die klinische, therapeutische und prognostische Relevanz dieser Befunde bedarf weiterer Studien.

Abstract

Objective In the literature, the BRAF mutation is reported to have been identified in 80 % of the examined canine prostate carcinomas (PCa). The objectives of this study were to test for the BRAF mutation in canine PCa in our cohort of canine patients, to determine the specificity and sensitivity of the test for this mutation, as well as to identify the association between the presence of the BRAF mutation and the histologic picture of PCa. Moreover, the method was to be established in cytology samples.

Material and methods Biopsy samples (n = 70) and cytologic slides (n = 17) of 87 dogs with prostatic diseases were selected. Prostatic diseases were classified according to the literature as benign prostate hyperplasia (BPH, n = 22), prostatitis (n = 14), squamous cell metaplasia of the prostate (PM, n = 2), atrophy following castration (n = 3) und PCa (n = 46; histologic diagnosis n = 35, cytologic diagnosis n = 11). Additionally, the Gleason score was determined for each PCa. DNA isolation was performed using commercially available kits. Exon 15 was examined using the TaqMan® SNP assay. The specificity and sensitivity of the test were calculated.

Results A Gleason score of 6 and 7 was shown in 1 PCa each, in 33 cases the score ranged between 8 and 10. Sufficient amount of good-quality DNA was isolated from all samples. 28/46 PCa were tested positive for the BRAF mutation (sensitivity 61 %). The BRAF mutation was not evident in any of the dogs with BPH, prostatitis, PM or atrophy (specificity 100 %). PCa positive for the BRAF mutation exhibited a significantly higher Gleason score (p = 0.002) in comparison to PCa without this mutation.

Conclusion and clinical relevance BRAF mutation analysis is a highly specific method and may aid in confirming the diagnosis of PCa in histologically and cytologically questionable cases. PCa positive for BRAF mutation exhibited more criteria of malignancy than PCa without this mutation. The clinical, therapeutic, and prognostic relevance of these findings needs to be evaluated by further studies.

 
  • Literatur

  • 1 Adel A, Khadidja M. Canine prostatic disorders. J Vet Med 2017; 2 (03) 83-90
  • 2 Agnew DW, MacLachlan NJ. Tumors of the genital system. In: Meuten DJ. ed. Tumors in Domestic Animals. 5th ed.. Ames, Iowa: Wiley Blackwell; 2017: 632-688
  • 3 Aupperle-Lellbach H, Grassinger J, Hohloch C. et al. Diagnostische Aussagekraft der BRAF-Mutation V595E in Urinproben, Ausstrichen und Bioptaten beim kaninen Übergangszellkarzinom. Tierarztl Prax Ausg K Kleintiere Heimtiere 2018; 46 (05) 289-295
  • 4 Aupperle-Lellbach H, Kehl A, Merz S. et al. Die BRAF-Mutation V595E im Übergangszellkarzinom – Untersuchungen zur Rassedisposition bei Terriern. Kleintiermedizin 2019; 1: 30-33
  • 5 Barsanti JA, Finco DR. Evaluation of techniques for diagnosis of canine prostatic diseases. J Am Vet Med Assoc 1984; 185 (02) 198-200
  • 6 Bryan JN, Keeler MR, Henry CJ. et al. A population study of neutering status as a risk factor for canine prostate cancer. Prostate 2007; 67 (11) 1174-1181
  • 7 Christensen BW. Canine prostate disease. Vet Clin North Am Small Anim Pract 2018; 48 (04) 701-719
  • 8 Cornell KK, Bostwick DG, Cooley DM. et al. Clinical and pathologic aspects of spontaneous canine prostate carcinoma: a retrospective analysis of 76 cases. Prostate 2000; 45 (02) 173-183
  • 9 Cunto M, Mariani E, Anicito Guido E. et al. Clinical approach to prostatic diseases in the dog. Reprod Domest Anim. 2019 doi:10.1111/rda.13437
  • 10 Delahunt B, Miller RJ, Srigley JR. et al. Gleason grading: past, present and future. Histopathology 2012; 60 (01) 75-86
  • 11 Downward J. Targeting RAS signaling pathways in cancer therapy. Nat Rev Cancer 2003; 3 (01) 11-22
  • 12 Eberhardt F, Kiefer I. Das Prostatakarzinom des Hundes. Kleintier Konkret 2015; 18 (04) 22-33
  • 13 Epstein JI, Allsbrook Jr WC, Amin MB. et al. ISUP Grading Committee. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol 2005; 29 (09) 1228-1242
  • 14 Epstein JI, Amin MB, Reuter VE. et al. Contemporary Gleason grading of prostatic carcinoma: An update with discussion on practical issues to implement the 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol 2017; 41 (04) e1-e7
  • 15 Epstein JI, Egevad L, Amin MB. et al. Grading Committee. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: Definition of grading patterns and proposal for a new grading system. Am J Surg Pathol 2016; 40 (02) 244-252
  • 16 Kennedy PC, Cullen JM, Edwars JF. et al. Tumors of accessory reproductive organs. In: Kennedy PC, Cullen JM, Edwards JF. et al., eds. World Health Organization international histological classification of tumors of domestic animals, histological classification of tumors of the genital system. Washington DC: Armed Forces Institute of Pathology; 1998: 20-22
  • 17 Köllermann J, Albrecht H, Schlomm T. et al. Activating BRAF gene mutations are uncommon in hormone refractory prostate cancer in Caucasian patients. Oncol Lett 2010; 1 (04) 729-732
  • 18 Lai CL, van den Ham R, van Leenders G. et al. Histopathological and immunohistochemical characterization of canine prostate cancer. Prostate 2008; 68 (05) 477-488
  • 19 Lee J. Transformation of adenocarcinoma of prostate to squamous cell carcinoma following hormonal treatment: A case report and review of the literature. Radiol Case Rep 2019; 14 (04) 483-489
  • 20 LeRoy BE, Nadella MV, Toribio RE. et al. Canine prostate carcinomas express markers of urothelial and prostatic differentiation. Vet Pathol 2004; 41 (02) 131-140
  • 21 Leroy BE, Northrup N. Prostate cancer in dogs: comparative and clinical aspects. Vet J 2009; 180 (02) 149-162
  • 22 Liu T, Willmore-Payne C, Layfield LJ. et al. Lack of BRAF activating mutations in prostate adenocarcinoma: a study of 93 cases. Appl Immunohistochem Mol Morphol 2009; 17 (02) 121-125
  • 23 Madewell BR, Deitch AD, Higgins RJ. et al. DNA flow cytometric study of the hyperplastic and neoplastic canine prostate. Prostate 1991; 18 (02) 173-179
  • 24 Mochizuki H, Breen M. Comparative aspects of BRAF mutations in canine Cancers. Vet Sci 2015; 2 (03) 231-245
  • 25 Mochizuki H, Kennedy K, Shapiro SG. et al. BRAF Mutations in canine cancers. PLoS ONE. 2015 doi:10.1371/journal.pone.0129534
  • 26 Montor WR, Salas AROSE, Machado de Melo FH. Receptor tyrosine kinases and downstream pathways as druggable targets for cancer treatment: the current arsenal of inhibitors. Mol Cancer 2018; 17 (01) 55-73
  • 27 Moreira DM, de O Freitas DM, Nickel JC. et al. The combination of histological prostate atrophy and inflammation is associated with lower risk of prostate cancer in biopsy specimens. Prostate Cancer Prostatic Dis 2017; 20 (04) 413-417
  • 28 Palmieri C, Grieco V. Proposal of Gleason-like grading system of canine prostate carcinoma in veterinary pathology practice. Res Vet Sci 2015; 103: 11-15
  • 29 Palmieri C, Lean FZ, Akter SH. et al. A retrospective analysis of 111 canine prostatic samples: histopathological findings and classification. Res Vet Sci 2014; 97 (03) 568-573
  • 30 Sato S, Watanabe M, Taniuchi S. et al. Precise preoperative localization of prostate cancer employing 12-core needle biopsy with a tissue-marking method for effective surgical strategy. Tohoku J Exp Med 2015; 236 (01) 55-61
  • 31 Sorenmo KU, Goldschmidt M, Shofer F. et al. Immunohistochemical characterization of canine prostatic carcinoma and correlation with castration status and castration time. Vet Comp Oncol 2003; 1 (01) 48-56
  • 32 Sun F, Báez-Díaz C, Sánchez-Margallo FM. Canine prostate models in preclinical studies of minimally invasive interventions: part I, canine prostate anatomy and prostate cancer models. Transl Androl Urol 2017; 6 (03) 538-546
  • 33 Teske E, Naan EC, van Dijk EM. et al. Canine prostate carcinoma: epidemiological evidence of an increased risk in castrated dogs. Mol Cell Endocrinol 2002; 197 (01/02) 251-255
  • 34 Winkler S, Murua Escobar H, Eberle N. et al. Establishment of a cell line derived from a canine prostate carcinoma with a highly rearranged karyotype. J Hered 2005; 96 (07) 782-755
  • 35 Winkler S, Reimann-Berg N, Murua Escobar H. et al. Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer. Cancer Genet Cytogenet 2006; 169 (02) 154-158