Tierarztl Prax Ausg K Kleintiere Heimtiere 2019; 47(05): 344-357
DOI: 10.1055/a-1010-0111
Übersichtsartikel
© Georg Thieme Verlag KG Stuttgart · New York

Das Nervenwurzelsyndrom beim Kleintier

Eine Literaturübersicht mit Fokus auf die Pathophysiologie und Therapie beim HundThe nerve root syndrome in small animalsA review focussing on pathophysiology and therapy in the dog
Louise Eberhardt
Kleintierklinik, Vetsuisse Fakultät der Universität Bern, Schweiz
,
Julien Guevar
Kleintierklinik, Vetsuisse Fakultät der Universität Bern, Schweiz
,
Franck Forterre
Kleintierklinik, Vetsuisse Fakultät der Universität Bern, Schweiz
› Author Affiliations
Further Information

Publication History

03 July 2019

09 September 2019

Publication Date:
18 October 2019 (online)

Zusammenfassung

Eine große Vielfalt an Ätiologien gilt als ursächlich für das Nervenwurzelsyndrom beim Hund. Dabei zählen der lateralisierte Bandscheibenvorfall, die Foraminalstenose sowie maligne und benigne Nervenscheidentumoren zu den wichtigsten beschriebenen Auslösern. Das klinische Bild des Nervenwurzelsyndroms zeichnet sich aus durch eine Monoparese in Verbindung mit einer fortschreitenden Lahmheit, die mit einer Schonhaltung der betroffenen Gliedmaße im Stand einhergehen kann. Obwohl die Problematik bei Klinikern gut bekannt ist, gibt es in der tiermedizinischen Literatur keinen Übersichtsartikel, der das Thema „Nervenwurzelsyndrom beim Kleintier“ spezifisch behandelt. Meist wird es lediglich als Symptom seiner potenziellen Ätiologien erwähnt, dem sog. Nervenwurzelzeichen (nerve root sign). Bei der Pathophysiologie der Nervenwurzelkompression oder -irritation spielen eine Reihe biomechanischer und biochemischer Faktoren eine Rolle, die einzeln oder im Zusammenspiel auftreten und dieselben Veränderungen hervorrufen können. Im Zentrum der Pathophysiologie des Syndroms scheinen Änderungen der Mikrozirkulation zu stehen. Diese Mikrozirkulationsstörungen ziehen nicht nur pathomorphologische Veränderungen, wie Ödembildung, Demyelinisation und Axonuntergang, nach sich, sondern leiten auch am Ort der Schädigung sowie im zentralen Nervengewebe eine Kaskade an Reaktionen ein. So kommt es zur Ausschüttung verschiedener Neuropeptide, zur Modulation der Nervenexzitabilität und zur Impulsweiterleitung. Unterschiedliche Pathomechanismen führen somit vielfach zu einem einheitlichen Schädigungsbild, was eine nachträgliche Aufschlüsselung in die ursprünglich auslösenden Faktoren erheblich erschwert. Die Antwort des Körpers auf diese einwirkenden Faktoren gibt den Ausschlag dafür, ob tatsächlich ein Nervenwurzelsyndrom entsteht. Eine Behebung der Grundursache, falls sie gefunden wird, sowie eine individuelle und multimodale Schmerztherapie scheinen beim Nervenwurzelsyndrom die erfolgreichsten therapeutischen Maßnahmen zu sein.

Abstract

A large variety of etiologies is considered to be the cause of nerve root syndrome in dogs. Lateralized disc herniation, foraminal stenosis and malignant as well as benign nerve sheath tumors are some of the most important triggers described. The clinical signs of a nerve root syndrome are characterized by monoparesis in combination with progressive lameness, which may be accompanied by an elevation of the affected limb. Although the problem is well known among clinicians, there is no review article in the veterinary literature that specifically covers the subject of “nerve root syndrome in small animals”. Mostly, this is merely mentioned as a symptom of its potential etiologies, as the so-called “nerve root sign” or “nerve root signature”. In the pathophysiology of nerve root compression or irritation, a number of biomechanical and biochemical factors play a role. These occur individually or in combination and may lead to the same changes. The pathophysiology of the syndrome seems to focus around changes in microcirculation. These microcirculation disorders not only lead to pathomorphological changes such as edema formation, demyelination and axon death, but also initiate a cascade of reactions at the site of damage as well as in the central nervous tissue. This leads to the release of various neuropeptides, modulation of nerve excitability and impulse transmission. Different pathomechanisms therefore often lead to a uniform damage pattern, which makes it difficult to point out the original triggering factors. The body’s response to these factors determines whether a nerve root syndrome actually develops or not. The treatment of the cause, if found, and an individual and multimodal pain therapy seem to be the most successful therapeutic approaches for nerve root syndrome in dogs.

 
  • Literatur

  • 1 Abraham LA, Mitten RW, Beck C. et al. Diagnosis of sciatic nerve tumour in two dogs by electromyography and magnetic resonance imaging. Aust Vet J 2003; 81 (01/02) 42-46
  • 2 Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010; 9 (08) 807-819
  • 3 Baron R, Mahn F. [Types of topical treatment for peripheral neuropathic pain: Mechanism of action and indications]. Schmerz 2010; 24 (04) 317-325
  • 4 Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988; 33 (01) 87-107
  • 5 Berlit P. Hrsg. Klinische Neurologie. 3. Aufl.. Berlin: Spinger; 2011
  • 6 Berthelot JM, Laredo JD, Darrieutort-Laffite C. et al. Stretching of roots contributes to the pathophysiology of radiculopathies. Joint Bone Spine 2018; 85 (01) 41-45
  • 7 Calvin WH, Devor M, Howe JF. Can neuralgias arise from minor demyelination? Spontaneous firing, mechanosensitivity, and afterdischarge from conducting axons. Exp Neurol 1982; 75 (03) 755-763
  • 8 Cornefjord M, Sato K, Olmarker K. et al. A model for chronic nerve root compression studies. Presentation of a porcine model for controlled, slow-onset compression with analyses of anatomic aspects, compression onset rate, and morphologic and neurophysiologic effects. Spine (Phila Pa 1976) 1997; 22 (09) 946-957
  • 9 Corti L. Nonpharmaceutical approaches to pain management. Top Companion Anim Med 2014; 29 (01) 24-28
  • 10 Foitzik U. Pathomorphologie der Nervenwurzelkompression beim Hund [Dissertation]. München: Tierärztliche Fakultät, Ludwig-Maximilians-Universität; 2016
  • 11 Forterre F. Persönliche Mitteilung. 2018
  • 12 Forterre F, Gorgas D, Jaggy A. et al. Suspected paradoxical nerve root signature in a dog with right-sided intervertebral lumbar disk extrusion: a case report. Wien Tierarztl Monatsschr 2010; 97 (07/08) 181-184
  • 13 Foster RE, Whalen CC, Waxman SG. Reorganization of the axon membrane in demyelinated peripheral nerve fibers: morphological evidence. Science 1980; 210 (4470): 661-663
  • 14 Frank LR, Roynard PFP. Veterinary neurologic rehabilitation: The rationale for a comprehensive approach. Top Companion Anim Med 2018; 33 (02) 49-57
  • 15 Freeman SA, Desmazieres A, Fricker D. et al. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cell Mol Life Sci 2016; 73 (04) 723-735
  • 16 Giambuzzi S, Pancotto T, Ruth J. Perineural injection for treatment of root-signature signs associated with lateralized disc material in five dogs (2009–2013). Front Vet Sci 2016; 3: 1
  • 17 Granit R, Skoglund CR. Facilitation, inhibition and depression at the ‘artificial synapse’ formed by the cut end of a mammalian nerve. J Physiol 1945; 103 (04) 435-448
  • 18 Hasue M. Pain and the nerve root. An interdisciplinary approach. Spine (Phila Pa 1976) 1993; 18 (14) 2053-2508
  • 19 Hatch MN, Cushing TR, Carlson GD. et al. Neuropathic pain and SCI: Identification and treatment strategies in the 21st century. J Neurol Sci 2018; 384: 75-83
  • 20 Howe JF, Loeser JD, Calvin WH. Mechanosensitivity of dorsal root ganglia and chronically injured axons: a physiological basis for the radicular pain of nerve root compression. Pain 1977; 3 (01) 25-41
  • 21 Izzo R, Popolizio T, D’Aprile P. et al. Spinal pain. Eur J Radiol 2015; 84 (05) 746-756
  • 22 Jaggy A. ed. Small Animal Neurology. An Illustrated Text. Hannover: Schlütersche; 2010: 580
  • 23 Kayama S, Konno S, Olmarker K. et al. Incision of the anulus fibrosus induces nerve root morphologic, vascular, and functional changes. An experimental study. Spine (Phila Pa 1976) 1996; 21 (22) 2539-2543
  • 24 Kobayashi S, Baba H, Uchida K. et al. Effect of mechanical compression on the lumbar nerve root: localization and changes of intraradicular inflammatory cytokines, nitric oxide, and cyclooxygenase. Spine (Phila Pa 1976) 2005; 30 (15) 1699-1705
  • 25 Kobayashi S, Mwaka ES, Meir A. et al. Changes in blood flow, oxygen tension, action potentials, and vascular permeability induced by arterial ischemia or venous congestion on the lumbar dorsal root ganglia in dogs. J Neurotrauma 2009; 26 (07) 1167-1175
  • 26 Kobayashi S, Yoshizawa H, Nakai S. Experimental study on the dynamics of lumbosacral nerve root circulation. Spine (Phila Pa 1976) 2000; 25 (03) 298-305
  • 27 Kobayashi S, Yoshizawa H, Yamada S. Pathology of lumbar nerve root compression. Part 1: Intraradicular inflammatory changes induced by mechanical compression. J Orthop Res 2004; 22 (01) 170-179
  • 28 Kobayashi S, Yoshizawa H, Yamada S. Pathology of lumbar nerve root compression. Part 2: morphological and immunohistochemical changes of dorsal root ganglion. J Orthop Res 2004; 22 (01) 180-188
  • 29 Koch D, Fischer MS. Lahmheitsuntersuchung beim Hund. Funktionelle Anatomie, Diagnostik und Therapie. 2. Aufl.. Stuttgart: Thieme; 2019: 245
  • 30 Liu F, Yuan H. Role of glia in neuropathic pain. Front Biosci (Landmark Ed) 2014; 19: 798-807
  • 31 Marshall LL, Trethewie ER, Curtain CC. Chemical radiculitis. A clinical, physiological and immunological study. Clin Orthop Relat Res 1977; (129): 61-67
  • 32 Mathews KA. Neuropathic pain in dogs and cats: if only they could tell us if they hurt. Vet Clin North Am Small Anim Pract 2008; 38 (06) 1365-1414 vii-viii
  • 33 McDonnell JJ, Platt SR, Clayton LA. Neurologic conditions causing lameness in companion animals. Vet Clin North Am Small Anim Pract 2001; 31 (01) 17-38
  • 34 Moore SA. Managing neuropathic pain in dogs. Front Vet Sci 2016; 3: 12
  • 35 Murata Y, Nannmark U, Rydevik B. et al. The role of tumor necrosis factor-alpha in apoptosis of dorsal root ganglion cells induced by herniated nucleus pulposus in rats. Spine (Phila Pa 1976) 2008; 33 (02) 155-162
  • 36 Murata Y, Olmarker K, Larsson K. et al. Production of tumor necrosis factor-alpha from porcine nucleus pulposus cells at various time points in cell culture under conditions of nutritional deficiency. Cytokine 2006; 34 (03/04) 206-211
  • 37 Murata Y, Olmarker K, Takahashi I. et al. Effects of selective tumor necrosis factor-alpha inhibition to pain-behavioral changes caused by nucleus pulposus-induced damage to the spinal nerve in rats. Neurosci Lett 2005; 382 (01/02) 148-152
  • 38 Murata Y, Onda A, Rydevik B. et al. Changes in pain behavior and histologic changes caused by application of tumor necrosis factor-alpha to the dorsal root ganglion in rats. Spine (Phila Pa 1976) 2006; 31 (05) 530-535
  • 39 Murata Y, Onda A, Rydevik B. et al. Selective inhibition of tumor necrosis factor-alpha prevents nucleus pulposus-induced histologic changes in the dorsal root ganglion. Spine (Phila Pa 1976) 2004; 29 (22) 2477-2484
  • 40 Myers RR. 1994 ASRA Lecture. The pathogenesis of neuropathic pain. Reg Anesth 1995; 20 (03) 173-184
  • 41 Olmarker K, Blomquist J, Stromberg J. et al. Inflammatogenic properties of nucleus pulposus. Spine (Phila Pa 1976) 1995; 20 (06) 665-669
  • 42 Olmarker K, Holm S, Rosenqvist AL. et al. Experimental nerve root compression. A model of acute, graded compression of the porcine cauda equina and an analysis of neural and vascular anatomy. Spine (Phila Pa 1976) 1991; 16 (01) 61-69
  • 43 Olmarker K, Rydevik B. Selective inhibition of tumor necrosis factor-alpha prevents nucleus pulposus-induced thrombus formation, intraneural edema, and reduction of nerve conduction velocity: possible implications for future pharmacologic treatment strategies of sciatica. Spine (Phila Pa 1976) 2001; 26 (08) 863-869
  • 44 Olmarker K, Rydevik B, Holm S. Edema formation in spinal nerve roots induced by experimental, graded compression. An experimental study on the pig cauda equina with special reference to differences in effects between rapid and slow onset of compression. Spine (Phila Pa 1976) 1989; 14 (06) 569-573
  • 45 Olmarker K, Rydevik B, Nordborg C. Autologous nucleus pulposus induces neurophysiologic and histologic changes in porcine cauda equina nerve roots. Spine 1993; 18 (11) 1425-1432
  • 46 Olmarker K, Storkson R, Berge OG. Pathogenesis of sciatic pain: a study of spontaneous behavior in rats exposed to experimental disc herniation. Spine (Phila Pa 1976) 2002; 27 (12) 1312-1317
  • 47 Platt SR, Olby NJ. ed. BSAVA Manual of Canine and Feline Neurology. 4th ed.. Cheltenham: British Small Animal Veterinary Association; 2013: 542
  • 48 Renberg WC. Evaluation of the lame patient. Vet Clin North Am Small Anim Pract 2001; 31 (01) 1-16 , v
  • 49 Rosati M, Goedde T, Steffen F. et al. Developmental changes in voltage-gated calcium channel alpha (2)delta-subunit expression in the canine dorsal root ganglion. Dev Neurosci 2012; 34 (05) 440-448
  • 50 Rydevik B, Brown MD, Lundborg G. Pathoanatomy and pathophysiology of nerve root compression. Spine (Phila Pa 1976) 1984; 9 (01) 7-15
  • 51 Saal JS, Franson RC, Dobrow R. et al. High levels of inflammatory phospholipase A2 activity in lumbar disc herniations. Spine (Phila Pa 1976) 1990; 15 (07) 674-678
  • 52 Salomon F-V, Geyer H, Gille U. ed. Anatomie für die Tiermedizin. 3. Aufl.. Stuttgart: Enke; 2015: 872
  • 53 Selkirk SM, Ruff R. Low back pain, radiculopathy. Handb Clin Neurol 2016; 136 (136) 1027-1033
  • 54 Shi TJ, Xiang Q, Zhang MD. et al. Somatostatin and its 2 A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain. Mol Pain 2014; 10: 12
  • 55 Spencer DL, Irwin GS, Miller JA. Anatomy and significance of fixation of the lumbosacral nerve roots in sciatica. Spine (Phila Pa 1976) 1983; 8 (06) 672-679
  • 56 Takahashi N, Yabuki S, Aoki Y. et al. Pathomechanisms of nerve root injury caused by disc herniation: an experimental study of mechanical compression and chemical irritation. Spine (Phila Pa 1976) 2003; 28 (05) 435-441
  • 57 Vanhoestenberghe A. Chronic nerve root entrapment: compression and degeneration. J Neural Eng 2013; 10 (01) 011001
  • 58 Wall PD, Bonica JJ. ed. Textbook of Pain. 3rd ed.. Edinburgh: Churchill Livingstone; 1994: 1524
  • 59 Waxman SG. Conduction in myelinated, unmyelinated, and demyelinated fibers. Arch Neurol 1977; 34 (10) 585-589
  • 60 Wehling P. [Synovial cytokines facilitate the development of spontaneous nerve root activity following compression]. Z Orthop Ihre Grenzgeb 1991; 129 (05) 417-422
  • 61 Wehling P, Evans CH, Schulitz KP. [The interaction between synovial cytokines and peripheral nerve function: a potential element in the development of radicular syndrome]. Z Orthop Ihre Grenzgeb 1990; 128 (05) 442-446
  • 62 Wehling P, Molsberger A, Schulitz KP. [Pain and the spine. A review. 1. On the pathophysiology of radicular pain syndromes. Current concepts explaining pain in nerve entrapment syndromes]. Z Orthop Ihre Grenzgeb 1989; 127 (02) 197-201