Aktuelle Kardiologie 2019; 8(06): 451-460
DOI: 10.1055/a-1027-6411
Kurzübersicht
Georg Thieme Verlag KG Stuttgart · New York

Hypoperfusionssyndrom und kardiogener Schock

Hypoperfusion and Cardiogenic Shock
Marcus Hennersdorf
Medizinische Klinik I, SLK-Kliniken Heilbronn GmbH, Heilbronn
,
Dominik Scharpf
Medizinische Klinik I, SLK-Kliniken Heilbronn GmbH, Heilbronn
› Author Affiliations
Further Information

Publication History

Publication Date:
19 December 2019 (online)

Zusammenfassung

Der kardiogene Schock stellt nach wie vor ein Krankheitsbild mit hoher Mortalität dar. In dieser Situation entwickelt sich nahezu regelhaft eine Laktatazidose durch Gewebsischämie. Diese wiederum unterstützt den klinischen Gesamteindruck eines Schockzustandes. Das erhöhte Laktat bzw. mehr noch die verzögerte oder fehlende Laktatclearance sind harte Prädiktoren der schlechten Prognose. In dieser Situation ist die hämodynamische Stabilisierung neben der Ursachentherapie oberstes Gebot. Eine balancierte Volumen-/Katecholamintherapie stellt die Basis dar. Früh muss aber eine Entscheidung für oder gegen den Einsatz eines mechanischen Unterstützungssystems fallen. Entscheidungshilfen sind klinische, aber auch laborchemische und interventionelle Faktoren. Das fallende Laktat (die Laktatclearance) ist auch unter extrakorporalem System der wichtigste Ausdruck einer funktionierenden Therapie. Randomisierte Studien, die eine Prognoseverbesserung dieser schwer kranken Patienten beweisen, existieren derzeit nicht. Umso wichtiger ist der rationale, aber frühe Einsatz dieser Systeme nach in Positionspapieren definierten Kriterien.

Abstract

Cardiogenic shock continues to be a disease with high mortality. In this situation, lactate acidosis develops almost regularly as a result of tissue ischemia. This in turn supports the overall clinical impression of a state of shock. The increased lactate or even more the delayed or missing lactate clearance are hard predictors of the bad prognosis. In this situation, hemodynamic stabilization is the top priority alongside causal therapy. The basis is a balanced volume/catecholamine therapy. However, a decision for or against the use of a mechanical support system must be made at an early stage. Decision aids are clinical, but also laboratory chemical and interventional factors. The falling lactate (lactate clearance) is also the most important expression of a successful therapy under an extracorporeal system. Currently, randomized studies that show an improvement in the prognosis of these critically ill patients do not exist. This makes the rational but early use of these systems according to criteria defined in position papers all the more important.

Was ist neu/wichtig?

Ein erhöhtes Laktat bzw. eine Laktatazidose stellt ein Kriterium der Diagnosestellung des kardiogenen Schockes dar. Gleichzeitig ist dies neben der verzögerten Laktat-Clearance einer der wichtigsten Prognoseparameter in dieser lebensbedrohlichen Situation. Der Einsatz von extrakorporalen Unterstützungssystemen (Impella, ECLS) führt zu einer zumindest kurzfristigen Stabilisierung solcher Patienten. Die Patientenauswahl und der Umgang mit diesen Systemen sowie den assoziierten Komplikationen stellen wichtige Herausforderungen dar.

 
  • Literatur

  • 1 Shah M, Patnaik S, Patel B. et al. Trends in mechanical circulatory support use and hospital mortality among patients with acute myocardial infarction and non-infarction related cardiogenic shock in the United States. Clin Res Cardiol 2018; 107: 287-303
  • 2 Kolte D, Khera S, Aronow WS. et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. J Am Heart Assoc 2014; 3: e000590
  • 3 Puymirat E, Fagon JY, Aegerter P. et al. Cardiogenic shock in intensive care units: evolution of prevalence, patient profile, management and outcomes, 1997-2012. Eur J Heart Fail 2017; 19: 192-200
  • 4 Patel NJ, Patel N, Bhardwaj B. et al. Trends in utilization of mechanical circulatory support in patients hospitalized after out-of-hospital cardiac arrest. Resuscitation 2018; 127: 105-113
  • 5 Kataja A, Tarvasmaki T, Lassus J. et al. Altered mental status predicts mortality in cardiogenic shock – results from the CardShock study. Eur Heart J Acute Cardiovasc Care 2018; 7: 38-44
  • 6 Haas SA, Lange T, Saugel B. et al. Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients. Intensive Care Med 2016; 42: 202-210
  • 7 Jung C, Fuernau G, Eitel I. et al. Incidence, laboratory detection and prognostic relevance of hypoxic hepatitis in cardiogenic shock. Clin Res Cardiol 2017; 106: 341-349
  • 8 Donnino MW, Andersen LW, Chase M. et al. Center for Resuscitation Science Research Group. Randomized, Double-Blind, Placebo-Controlled Trial of Thiamine as a Metabolic Resuscitator in Septic Shock: A Pilot Study. Crit Care Med 2016; 44: 360-367
  • 9 Woolum JA, Abner EL, Kelly A. et al. Effect of Thiamine Administration on Lactate Clearance and Mortality in Patients With Septic Shock. Crit Care Med 2018; 46: 1747-1752
  • 10 Kimmoun A, Novy E, Auchet T. et al. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care 2015; 19: 175-175
  • 11 Baran DA, Grines CL, Bailey S. et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc Interv 2019; 94: 29-37
  • 12 Muller G, Flecher E, Lebreton G. et al. The ENCOURAGE mortality risk score and analysis of long-term outcomes after VA-ECMO for acute myocardial infarction with cardiogenic shock. Intensive Care Med 2016; 42: 370-378
  • 13 Schmidt M, Burrell A, Roberts L. et al. Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno-arterial-ECMO (SAVE)-score. Eur Heart J 2015; 36: 2246-2256
  • 14 Cheng JM, Helming AM, van Vark LC. et al. A simple risk chart for initial risk assessment of 30-day mortality in patients with cardiogenic shock from ST-elevation myocardial infarction. Eur Heart J Acute Cardiovasc Care 2016; 5: 101-107
  • 15 Kaestner F, Rapp D, Trudzinski FC. et al. High Serum Bilirubin Levels, NT-pro-BNP, and Lactate Predict Mortality in Long-Term, Severely Ill Respiratory ECMO Patients. ASAIO J 2018; 64: 232-237
  • 16 Basir MB, Kapur NK, Patel K. et al. Improved Outcomes Associated with the use of Shock Protocols: Updates from the National Cardiogenic Shock Initiative. Catheter Cardiovasc Interv 2019; 93: 1173-1183
  • 17 De Backer D, Biston P, Devriendt J. et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 2010; 362: 779-789
  • 18 Levy B, Perez P, Perny J. et al. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med 2011; 39: 450-455
  • 19 Bouchez S, Fedele F, Giannakoulas G. et al. Levosimendan in Acute and Advanced Heart Failure: an Expert Perspective on Posology and Therapeutic Application. Cardiovasc Drugs Ther 2018; 32: 617-624
  • 20 Herpain A, Bouchez S, Girardis M. et al. Use of Levosimendan in Intensive Care Unit Settings: An Opinion Paper. J Cardiovasc Pharmacol 2019; 73: 3-11
  • 21 Thiele H, Zeymer U, Neumann FJ. et al. IABP-SHOCK II Trial Investigators. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 2012; 367: 1287-1296
  • 22 Basir MB, Schreiber TL, Grines CL. et al. Effect of Early Initiation of Mechanical Circulatory Support on Survival in Cardiogenic Shock. Am J Cardiol 2017; 119: 845-851
  • 23 Schroeter MR, Kohler H, Wachter A. et al. Use of the Impella Device for Acute Coronary Syndrome Complicated by Cardiogenic Shock – Experience From a Single Heart Center With Analysis of Long-term Mortality. J Invasive Cardiol 2016; 28: 467-472
  • 24 Flaherty MP, Khan AR, OʼNeill WW. Early Initiation of Impella in Acute Myocardial Infarction Complicated by Cardiogenic Shock Improves Survival: A Meta-Analysis. JACC Cardiovasc Interv 2017; 10: 1805-1806
  • 25 Sieweke JT, Berliner D, Tongers J. et al. Mortality in patients with cardiogenic shock treated with the Impella CP microaxial pump for isolated left ventricular failure. Eur Heart J Acute Cardiovasc Care 2018; DOI: 10.1177/2048872618757393.
  • 26 Karatolios K, Chatzis G, Markus B. et al. Impella support compared to medical treatment for post-cardiac arrest shock after out of hospital cardiac arrest. Resuscitation 2018; 126: 104-110
  • 27 Dimas VV, Morray BH, Kim DW. et al. A multicenter study of the impella device for mechanical support of the systemic circulation in pediatric and adolescent patients. Catheter Cardiovasc Interv 2017; 90: 124-129
  • 28 Fox H, Farr M, Horstkotte D. et al. Fulminant Myocarditis Managed by Extracorporeal Life Support (Impella(R) CP): A Rare Case. Case Rep Cardiol 2017; 2017: 9231959
  • 29 Aso S, Matsui H, Fushimi K. et al. In-hospital mortality and successful weaning from venoarterial extracorporeal membrane oxygenation: analysis of 5,263 patients using a national inpatient database in Japan. Crit Care 2016; 20: 80
  • 30 Pappalardo F, Schulte C, Pieri M. et al. Concomitant implantation of Impella(R) on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock. Eur J Heart Fail 2017; 19: 404-412
  • 31 Patel SM, Lipinski J, Al-Kindi SG. et al. Simultaneous Venoarterial Extracorporeal Membrane Oxygenation and Percutaneous Left Ventricular Decompression Therapy with Impella Is Associated with Improved Outcomes in Refractory Cardiogenic Shock. ASAIO J 2019; 65: 21-28
  • 32 OʼNeill WW, Grines C, Schreiber T. et al. Analysis of outcomes for 15,259 US patients with acute myocardial infarction cardiogenic shock (AMICS) supported with the Impella device. Am Heart J 2018; 202: 33-38
  • 33 Banjas N, Hopf HB, Hanisch E. et al. ECMO-treatment in patients with acute lung failure, cardiogenic, and septic shock: mortality and ECMO-learning curve over a 6-year period. J Intensive Care 2018; 6: 84
  • 34 Abrams D, Garan AR, Abdelbary A. et al. International ECMO Network (ECMONet); The Extracorporeal Life Support Organization (ELSO). Position paper for the organization of ECMO programs for cardiac failure in adults. Intensive Care Med 2018; 44: 717-729
  • 35 Michels G, Wengenmayer T, Hagl C. et al. Recommendations for extracorporeal cardiopulmonary resuscitation (eCPR): consensus statement of DGIIN, DGK, DGTHG, DGfK, DGNI, DGAI, DIVI and GRC. Clin Res Cardiol 2019; 108: 455-464
  • 36 Graf J, Radunz W, Hager I. et al. Implementing an Innovative Cardiac Assist System in a Nonuniversity Hospital–Feasibility, Complications, and First Results. Artif Organs 2015; 39: 635-639
  • 37 Merkle J, Azizov F, Fatullayev J. et al. Monitoring of adult patient on venoarterial extracorporeal membrane oxygenation in intensive care medicine. J Thorac Dis 2019; 11: S946-S956
  • 38 Kim DJ, Cho YJ, Park SH. et al. Near-Infrared Spectroscopy Monitoring for Early Detection of Limb Ischemia in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation. ASAIO J 2017; 63: 613-617
  • 39 Lamb KM, DiMuzio PJ, Johnson A. et al. Arterial protocol including prophylactic distal perfusion catheter decreases limb ischemia complications in patients undergoing extracorporeal membrane oxygenation. J Vasc Surg 2017; 65: 1074-1079
  • 40 Cheng R, Hachamovitch R, Kittleson M. et al. Complications of Extracorporeal Membrane Oxygenation for Treatment of Cardiogenic Shock and Cardiac Arrest: A Meta-Analysis of 1,866 Adult Patients. Ann Thorac Surg 2014; 97: 610-616
  • 41 Kalbhenn J, Schmidt R, Nakamura L. et al. Early diagnosis of acquired von Willebrand Syndrome (AVWS) is elementary for clinical practice in patients treated with ECMO therapy. J Atheroscler Thromb 2015; 22: 265-271
  • 42 Flierl U, Tongers J, Berliner D. et al. Acquired von Willebrand syndrome in cardiogenic shock patients on mechanical circulatory microaxial pump support. PloS One 2017; 12: e0183193
  • 43 Esper SA, Welsby IJ, Subramaniam K. et al. Adult extracorporeal membrane oxygenation: an international survey of transfusion and anticoagulation techniques. Vox Sang 2017; 112: 443-452
  • 44 Mazzeffi MA, Tanaka K, Roberts A. et al. Bleeding, Thrombosis, and Transfusion With Two Heparin Anticoagulation Protocols in Venoarterial ECMO Patients. J Cardiothorac Vasc Anesth 2019; 33: 1216-1220
  • 45 Delmas C, Jacquemin A, Vardon-Bounes F. et al. Anticoagulation Monitoring Under ECMO Support: A Comparative Study Between the Activated Coagulation Time and the Anti-Xa Activity Assay. J Intensive Care Med 2018; DOI: 10.1177/0885066618776937.
  • 46 Garan AR, Eckhardt C, Takeda K. et al. Predictors of survival and ability to wean from short-term mechanical circulatory support device following acute myocardial infarction complicated by cardiogenic shock. Eur Heart J Acute Cardiovasc Care 2018; 7: 755-765
  • 47 Slottosch I, Liakopoulos O, Kuhn E. et al. Lactate and lactate clearance as valuable tool to evaluate ECMO therapy in cardiogenic shock. J Crit Care 2017; 42: 35-41