Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48(01): 35-44
DOI: 10.1055/a-1067-3980
Übersichtsartikel

Vorkommen und Bedeutung von Leukozyten im Kolostrum

Occurrence and importance of colostral leukocytes
Lukas Demattio
Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere, Justus-Liebig-Universität Gießen
,
Axel Wehrend
Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere, Justus-Liebig-Universität Gießen
› Author Affiliations

Zusammenfassung

Leukozyten konnten bereits bei vielen Tierarten als physiologischer Bestandteil des Kolostrums identifiziert werden und kommen in speziesspezifischer Menge und unterschiedlichen Anteilen der verschiedenen Leukozyten-Subpopulationen vor. Während früher vermutet wurde, dass Leukozyten nur akzidentell aus dem Blut ins Kolostrum gelangen oder Anzeichen einer Mastitis sind, weiß man heute, dass sie über verschiedene Mechanismen aktiv in die Milch einwandern. Die Arbeit gibt anhand einer Literaturübersicht einen Überblick über die Bedeutung kolostraler Leukozyten. Analog zum Übergang maternaler Immunglobuline geht auch mit maternalen Leukozyten mütterliche Immunität auf den Neonaten über. Die über das Kolostrum aufgenommenen Leukozyten werden enteral resorbiert, verteilen sich im Organismus des Neugeborenen und reichern sich in verschiedenen Organen an, ohne dabei ihre immunologischen Eigenschaften zu verlieren. Dabei werden nur Leukozyten des eigenen Muttertieres aufgenommen. Die übertragenen Zellen des maternalen Immunsystems ergänzen das Immunsystem des Neugeborenen. Verschiedene Studien konnten zeigen, dass sie nicht nur selbst eine immunologische Wirkung entfalten, sondern auch regulierend auf das Immunsystem des Neonaten wirken. Insbesondere der Übergang von T-Helferzellen und anderen regulativen Zelltypen des maternalen Immunsystems ermöglicht eine Reifung und Prägung des Immunsystems des Neonaten. Verfahren zur Behandlung von Kolostrum wie Mischen, Einfrieren, Erhitzen und Ansäuern sollten unter diesen Gesichtspunkten neu bewertet werden.

Abstract

Leukocytes have been identified as a physiological component of colostrum in numerous animal species. In each of the examined species, they have been shown to occur in a typical amount exhibiting slight differences in the composition of leukocyte subpopulations. According to previous opinions, colostral leukocytes merely accidentally transfer from blood to milk or represent a sign of mastitis. In contrast to this, it is now considered to be current knowledge that special mechanisms exist enabling these leukocytes to actively transfer into colostrum. The presented review provides an overview of the recent literature and demonstrates the significance of colostral leucocytes. In analogy to the passage of maternal immunoglobulins, colostral leukocytes migration also leads to a transition of immunity. The cells are enterally absorbed and distributed throughout the neonatal organism. Colostral leukocytes are found to accumulate in certain tissues and organs without losing their immunologic function. Merely the leucocytes of the own mother are absorbed and these cells complement the newborns’ immune system. As several studies have demonstrated, this is not solely due to the cells’ mere immunological function but also a consequence of a regulatory effect on the neonatal immune system. Especially T-helper and further regulatory cell types transferred via colostrum may help the newborn in optimizing and maturing their immunological situation. Colostral treatment methods such as mixing, freezing, heating and acidifying modifications warrant re-evaluation taking the above aspects under consideration.



Publication History

Received: 03 May 2019

Accepted: 27 September 2019

Article published online:
14 February 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Bandrick M, Ariza-Nieto C, Baidoo SK. et al. Colostral antibody-mediated and cell-mediated immunity contributes to innate and antigen-specific immunity in piglets. Dev Comp Immunol 2014; 43 (01) 114-120
  • 2 Chastant-Maillard S, Freyburger L, Marcheteau E. et al. Timing of the Intestinal Barrier Closure in Puppies. Reprod Domest Anim 2012; 47 (06) 190-193
  • 3 Fischer AJ, Malmuthuge N, Guan LL. et al. Short communication: The effect of heat treatment of bovine colostrum on the concentration of oligosaccharides in colostrum and in the intestine of neonatal male Holstein calves. J Dairy Sci 2018; 101 (01) 401-407
  • 4 Fischer AJ, Song Y, He Z. et al. Effect of delaying colostrum feeding on passive transfer and intestinal bacterial colonization in neonatal male Holstein calves. J Dairy Sci 2018; 101 (04) 3099-3109
  • 5 Ganz S, Bülte M, Gajewski Z. et al. Inhaltsstoffe des bovinen Kolostrums – eine Übersicht. Tierarztl Prax Ausg G Grosstiere Nutztiere 2018; 46 (03) 178-189
  • 6 Gonzales DD, Santos MJD. Bovine colostral cells – the often forgotten component of colostrum. J Am Vet Med A 2017; 250 (09) 998-1005
  • 7 Hale ML, Hanna EE, Hansen CT. Nude mice from homozygous nude parents show smaller PFC response to sheep erythrocytes than nude mice from heterozygous mothers. Nature 1976; 260: 44-45
  • 8 Hurley WL. The gestating and lactating sow. Wageningen Academic; 2015: 193-230
  • 9 Jain L, Vidyasagar D, Xanthou M. et al. In vivo distribution of human milk leucocytes after ingestion by newborn baboons. Arch Dis Child 1989; 64: 930-933
  • 10 Langel SN, Wark WA, Garst SN. et al. Effect of feeding whole compared with cell-free colostrum on calf immune status: The neonatal period. J Dairy Sci 2015; 98: 3729-3740
  • 11 Langel SN, Wark WA, Garst SN. et al. Effect of feeding whole compared with cell-free colostrum on calf immune status: Vaccination response. J Dairy Sci 2016; 99 (05) 3979-3994
  • 12 Liebler-Tenorio EM, Riedel-Caspari G, Pohlenz JF. Uptake of colostral leukocytes in the intestinal tract of newborn calves. Vet Immunol Immunopathol 2002; 85 (01/02) 33-40
  • 13 McEvoy LM, Sun H, Frelinger JG. et al. Anti-CD43 Inhibition of T Cell Homing. J Exp Med 1997; 185 (08) 1493-1498
  • 14 Mohr JA, Leu R, Mabry W. Colostral leukocytes. J Surg Oncol 1970; 2 (02) 163-167
  • 15 Nechvatalova K, Kudlackova H, Leva L. et al. Transfer of humoral and cell-mediated immunity via colostrum in pigs. Vet Immunol Immunopathol 2011; 142 (01/02) 95-100
  • 16 Novo SMF, Costa JFDR, Baccili CC. et al. Effect of maternal cells transferred with colostrum on the health of neonate calves. Res Vet Sci 2017; 112: 97-104
  • 17 Park YH, Fox LK, Hamilton MJ. et al. Bovine Mononuclear Leukocyte Subpopulations in Peripheral Blood and Mammary Gland Secretions During Lactation. J Dairy Sci 1992; 75 (04) 998-1006
  • 18 Perkins GA, Goodman LB, Wimer C. et al. Maternal T-lymphocytes in equine colostrum express a primarily inflammatory phenotype. Vet Immunol Immunopathol 2014; 161 (03/04) 141-150
  • 19 Quesnel H, Farmer C. Review : nutritional and endocrine control of colostrogenesis in swine. Animal 2019; 13 (Suppl. 01) 26-34
  • 20 Reber AJ, Lockwood A, Hippen AR. et al. Colostrum induced phenotypic and trafficking changes in maternal mononuclear cells in a peripheral blood leukocyte model for study of leukocyte transfer to the neonatal calf. Vet Immunol Immunopathol 2006; 109 (01/02) 139-150
  • 21 Reber AJ, Donovan DC, Gabbard J. et al. Transfer of maternal colostral leukocytes promotes development of the neonatal immune system. Part II. Effects on neonatal lymphocytes. Vet Immunol Immunopathol 2008; 123 (03/04) 305-313
  • 22 Reber AJ, Donovan DC, Gabbard J. et al. Transfer of maternal colostral leukocytes promotes development of the neonatal immune system I. Effects on monocyte lineage cells. Vet Immunol Immunopathol 2008; 123 (03/04) 305-313
  • 23 Riedel-Caspari G, Schmidt F-W. The Influence of colostral leukocytes on the immune system of the neonatal calf. I. Effects on lymphocyte response. Dtsch Tierärztl Wschr 1991; 98: 102-107
  • 24 Riedel-Caspari G, Schmidt F-W. The influence of colostral leukocytes on the immune system of the neonatal calf. III. Effects on phagocytosis. Dtsch Tierärztl Wschr 1991; 98: 330-334
  • 25 Riedel-Caspari G. The influence of colostral leukocytes on the course of an experimental Escherichia coli infection and serum antibodies in neonatal calves. Vet Immunol Immunopathol 1993; 35 (03/04) 275-288
  • 26 Schneider F, Wehrend A. Qualitätsbeurteilung von bovinem und equinem Kolostrum – Eine Übersicht. Schw Arch Tierheilkd 2019; 161 (05) 287-297
  • 27 Schnorr KL, Pearson LD. Intestinal absorption of maternal leucocytes by newborn lambs. J Reprod Immunol 1984; 6 (05) 329-337
  • 28 Seelig LL, Beer AE. Transepithelial Mammary Migration of Leukocytes in the Gland of Lactating Rats. Biol Reprod 1978; 18 (05) 736-744
  • 29 Sheldrake RF, Husband AJ. Intestinal uptake of intact maternal lymphocytes by neonatal rats and lambs. Res Vet Sci 1985; 39 (01) 10-15
  • 30 Springer TA. Adhesion receptors of the immune system. Nature 1990; 346 (6183): 425-434
  • 31 Stelwagen K, Carpenter E, Haigh B. et al. Immune components of bovine colostrum and milk. J Anim Sci 2009; 87: 3-9
  • 32 Taylor BC, Dellinger JD, Cullor JS. et al. Bovine milk lymphocytes display the phenotype of memory T cells and are predominantly CD8 +. Cell Immunol 1994; 156 (01) 245-253
  • 33 Tuboly S, Bernáth S, Glávits R. et al. Intestinal absorption of colostral lymphoid cells in newborn piglets. Vet Immunol Immunopathol 1988; 20 (01) 75-85
  • 34 Williams PP. Immunomodulating effects of intestinal absorbed maternal colostral leukocytes by neonatal pigs. Can J Vet Res 1993; 57 (01) 1