Z Gastroenterol 2020; 58(06): 542-555
DOI: 10.1055/a-1071-8322
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Current status of immunotherapy in gastrointestinal malignancies

Aktueller Stellenwert der Immuntherapie bei gastrointestinalen Tumoren
Sylvie Lorenzen
1   Department of Hematology and Oncology, Klinikum rechts der Isar, Technical University Munich, Germany
,
Florian Lordick
2   University Cancer Center, University Clinic Leipzig, Germany
,
Sven Heiko Loosen
3   University Hospital Aachen, Department of Medicin III, Aachen, Germany
,
Frank Tacke
4   Charité University Medicine Berlin, Department of Hepatology and Gastroenterology, Berlin, Germany
,
Christian Trautwein
5   Department of Medicin III, University Hospital, Aachen, Germany
,
Christoph Roderburg
4   Charité University Medicine Berlin, Department of Hepatology and Gastroenterology, Berlin, Germany
,
Thomas J. Ettrich
6   Department of Internal Medicine I, University of Ulm, Germany
,
Lukas Perkhofer
6   Department of Internal Medicine I, University of Ulm, Germany
,
Anke Reinacher-Schick
7   Ruhr-Universität, Medizinische Klinik, Bochum, Germany
,
Alexander Stein
8   Hämatologisch-Onkologische Praxis Eppendorf, University Cancer Center Hamburg, Germany
› Author Affiliations
Further Information

Publication History

02 October 2019

24 November 2019

Publication Date:
04 February 2020 (online)

Abstract

Gastrointestinal (GI) malignant neoplasms have a high global incidence and a huge impact on cancer-associated mortality. In the past years, excitement was growing among oncologists and patients alike for the use of immunotherapy, specifically immune checkpoint inhibitors. The approval of several PD-1/PD-L1 and CTLA-4 inhibitors radically changed the treatment landscape in many cancer types and established immune-oncology as a new treatment strategy against cancer. Despite major breakthrough reports, shortcomings of immune checkpoint inhibitors (ICI) have been observed, including primary and acquired treatment resistance, especially in patients receiving ICIs as a single treatment. Several immunotherapies for the treatment of GI tumors have recently emerged; however, checkpoint inhibition has not yet shown similar success in GI malignancies compared to other solid tumors. Various phase I–III trials focusing on immunotherapies for GI tumors have found only moderate to unsatisfactory objective response rates (ORR), ranging between 10 % and 25 %. In particular, negative studies have been reported in gastric and pancreatic cancer. Nevertheless, small subsets of cancers, such as DNA mismatch repair deficient (dMMR)/microsatellite instable (MSI) cancers, among others, seem to benefit from treatment with immune checkpoint inhibition. Routine testing for the rare molecular features that can predict response should be implemented in clinical routine for all GI tumors, and large scale clinical trials to identify predictive biomarkers are needed. This article will address the current use and evidence for immunotherapy in GI malignancies and future trends in this area for clinical practice.

Zusammenfassung

Gastrointestinale (GI) Tumoren haben weltweit eine hohe Inzidenz und tragen wesentlich zur krebsbedingten Mortalität bei. In den vergangenen Jahren entwickelte sich eine wachsende Begeisterung von Onkologen und Patienten für die Immuntherapie, insbesondere mit Checkpointinhibitoren. Die Zulassung verschiedenster PD-1/PD-L1- und CTLA-4-Inhibitoren hat die Behandlungsmöglichkeiten bei diversen Tumorentitäten nachhaltig beeinflusst und die Immuntherapie als neue onkologische Behandlungsstrategie etabliert. Trotz bahnbrechender Fortschritte gibt es auch Limitationen der immuncheckpointgerichteten Therapie, wie die primäre und erworbene Resistenz, besonders wenn Checkpointinhibitoren als Monotherapie verabreicht werden. Viele Phase-I- bis -III-Immuntherapiestudien wurden in den letzten Jahren bei GI-Tumoren durchgeführt, allerdings ohne vergleichbare Erfolge zu anderen Tumorentitäten und mit lediglich moderaten Ansprechraten zwischen 10 und 25 %. Insbesondere beim Magen- und Pankreaskarzinom zeigten Studien keinen Vorteil gegenüber den herkömmlichen Therapieoptionen. Dennoch scheinen Subgruppen wie u. a. DNA-mismatch-repair-defiziente (dMMR) oder mikrosatelliteninstabile (MSI-H) Tumoren in besonderem Maße von der Behandlung mit Immuncheckpointinhibitoren zu profitieren. Die routinemäßige Testung auf die bekannten molekularen Veränderungen sollte daher bei allen fortgeschrittenen GI-Tumoren erfolgen. Weitere große Studien zur Identifikation prädiktiver Biomarker werden dringend benötigt. Dieser Artikel fasst den derzeitigen klinischen Stand der Immuntherapie bei GI-Malignomen zusammen und bewertet die laufenden und zukünftigen Entwicklungsprogramme und ihre Umsetzung im klinischen Alltag.

 
  • References

  • 1 Fitzmaurice C, Akinyemiju TF. Global Burden of Disease Cancer Collaboration. et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol 2018; 4: 1553-1568
  • 2 Wagner AD, Syn NL, Moehler M. et al. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev 2017; 8: CD004064
  • 3 Fuchs CS, Doi T, Jang RW. et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase II clinical KEYNOTE-059 trial. JAMA Oncol 2018; 4: e180013
  • 4 Le DT, Durham JN, Smith KN. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357: 409-413
  • 5 The Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancer. Nature 2017; 543: 378-384
  • 6 The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014; 513: 202-209
  • 7 Kim ST, Cristescu R, Bass AJ. et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 2018; 24: 1449-1458
  • 8 Cristescu R, Lee J, Nebozhyn M. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 2015; 21: 449-456
  • 9 Secrier M, Li X, de Silva N. et al. Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nat Genet 2016; 48: 1131-1141
  • 10 U.S. National Library of Medicine. LOGiC-lapatinib optimization study in ERBB2 (HEr2) positive gastric cancer: a phase III global, blinded study designed to evaluate clinical endpoints and saftey of chemothearpy plus lapatinib. https://clinicaltrials.gov/ct2/show/results/NCT00680901 . Accessed on 2019
  • 11 Shitara K, Ozguroglu M, Bang YJ. et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet 2018; 392: 123-133
  • 12 Mathiak M, Warneke VS, Behrens HM. et al. Clinicopathologic characteristics of microsatellite instable gastric carcinomas revisited: urgent need for standardization. Appl Immunohistochem Mol Morphol 2017; 25: 12-24
  • 13 Kang YK, Boku N, Satoh T. et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390: 2461-2471
  • 14 Bang YJ, Ruiz EY, Van Cutsem E. et al. Phase III, randomised trial of avelumab versus physician's choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN Gastric 300. Ann Oncol 2018; 29: 2052-2060
  • 15 Weinberg ZA, Yoon HH, Catenacci DVT. et al. Efficacy and safety of pembrolizumab (pembro) alone or in combination with chemotherapy (chemo) in patients (pts) with advanced gastric or gastroesophageal (G/GEJ) cancer: Long-term follow up from KEYNOTE-059. J Clin Oncol 2019; 37: 4009
  • 16 Kojima T, Muro K, Francois E. et al. Pembrolizumab versus chemotherapy as second-line therapy for advanced esophageal cancer: Phase III KEYNOTE-181 study. J Clin Oncol 2019; 37: 2
  • 17 Muro K, Chung HC, Shankaran V. et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol 2016; 17: 717-726
  • 18 Kim YW, Joo J, Yoon HM. et al. Different survival outcomes after curative R0-resection for Eastern Asian and European gastric cancer: results from a propensity score matched analysis comparing a Korean and a German specialized center. Medicine (Baltimore) 2016; 95: e4261
  • 19 Tabernero J, Van Cutsem E, Bang YJ. et al. Pembrolizumab with or without chemotherapy versus chemotherapy for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: The phase III KEYNOTE-062 study. J Clin Oncol 2019; 37: 4007
  • 20 Moehler M, Janjigian YY, Adenis A. et al. CheckMate 649: a randomized, multicenter, open-label, phase III study of nivolumab(nivo) plus ipilimumab (ipi) or nivo + chemotherapy (CTX) vs CTX alone in pts with previously untreated advanced gastric or gastroesophageal junction (GEJ) cancer. J Clin Oncol 2017; 35: TPS4132
  • 21 Kang YK, Kato K, Chung HC. et al. Interim safety and clinical activity of nivolumab in combination with S-1/capecitabine plus oxaliplatin in patients (pts) with previously untreated unresectableadvanced or reccurent gastric/gastroesophageal junction (G/GEJ) cancer: part 1 study of ATTRACTION -04 (ONO-4538-37). Ann Oncol 2017; 28: 209-268
  • 22 Janjigian YY, Chou JF, Simmons M. et al. First-line pembrolizumab (P), trastuzumab (T), capecitabine (C) and oxaliplatin (O) in HER2-positive metastatic esophagogastric adenocarcinoma (mEGA). J Clin Oncol 2019; 37: 62
  • 23 Chau I, Bendell JC, Calvo E. et al. Ramucirumab (R), plus pembrolizumab (P) in treatment naive and previously treated advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: A multi-disease phase I study. J Clin Oncol 2017; 35: 4046
  • 24 Chau I, Penel N, Arkenau HT. et al. Safety and antitumor activity of ramucirumab plus pembrolizumab in treatment naive advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: preliminary results from a multi-disease phase I study (JVDF). J Clin Oncol 2018; 36: 101
  • 25 Shah MA, Adenis A, Enzinger PC. et al. Pembrolizumab versus chemotherapy as second-line therapy for advanced esophageal cancer: Phase 3 KEYNOTE-181 study. J Clin Oncol 2019; 37: 4010
  • 26 De Mello RA, Lordick F, Muro K. et al. Current and future aspects of immunotherapy for esophageal and gastric malignancies. Am Soc Clin Oncol Educ Book 2019; 39: 237-247
  • 27 Fujiwara N, Friedman SL, Goossens N. et al. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol 2018; 68: 526-549
  • 28 Galle PR, Forner A, Llovet JM. et al. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018; 69: 182-236
  • 29 Ringelhan M, Pfister D, O’Connor T. et al. The immunology of hepatocellular carcinoma. Nat Immunol 2018; 19: 222-232
  • 30 Mahipal A, Tella SH, Kommalapati A. et al. Immunotherapy in hepatocellular carcinoma: is there a light at the end of the tunnel?. Cancers (Basel) 2019; 11: 1078
  • 31 El-Khoueiry AB, Sangro B, Yau T. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389: 2492-2502
  • 32 Kudo M, Matilla A, Santoro A. et al. CheckMate-040: Nivolumab (NIVO) in patients (pts) with advanced hepatocellular carcinoma (aHCC) and Child-Pugh B (CPB) status. J Clin Oncol 2019; 37: 327
  • 33 Okusaka T, Ikeda M. Immunotherapy for hepatocellular carcinoma: current status and future perspectives. ESMO Open 2018; 3: e000455
  • 34 Yau T, Park JW, Finn RS. et al. CheckMate 459: a randomized, multi-center phase 3 study of nivolumab (nivo) vs sorafenib (sor) as first-line (1l) treatment in patients (pts) with. Annals of Oncology 2019; 30: v851-v934
  • 35 Zhu AX, Finn RS, Edeline J. et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018; 19: 940-952
  • 36 Merck & Co, Inc. Merck provides update on Keynote-240, a phase 3 study of keytruda® (pembrolizumab) in previously treated patients with advanced hepatocellular carcinoma. 2019 https://investors.merck.com/news/press-release-details/2019/Merck-Provides-Update-on-KEYNOTE-240-a-Phase-3-Study-of-KEYTRUDA-pembrolizumab-in-Previously-Treated-Patients-with-Advanced-Hepatocellular-Carcinoma/default.aspx . Accessed September 2019
  • 37 Ikeda M, Sung MW, Kudo M. et al. A phase 1b trial of lenvatinib (LEN) plus pembrolizumab (PEM) in patients (pts) with unresectable hepatocellular carcinoma (uHCC). J Clin Oncol 2018; 36: 4076
  • 38 Lee KH, Hsu CH, Lee MS. et al. 150O atezolizumab + bevacizumab in hepatocellular carcinoma (HCC): Safety and clinical activity results from a phase Ib study. Ann Oncol 2018; 29 DOI: 10.1093/annonc/mdy432.002.
  • 39 Yau T, Kang YK, Kim TY. et al. Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): results from CheckMate 040. J Clin Oncol 2019; 37: 4012
  • 40 Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet 2014; 383: 2168-2179
  • 41 Cheng AL, Qin S, Ikeda M. et al. Atezolizumab (atezo) + bevacizumab (bev) vs sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC): Phase 3 results from IMbrave150. European Society for Medical Oncology (ESMO) Asia Congress; 2019
  • 42 Valle J, Wasan H, Palmer DH. et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362: 1273-1281
  • 43 Vogel A, Kasper S, Bitzer M. et al. PICCA study: panitumumab in combination with cisplatin/gemcitabine chemotherapy in KRAS wild-type patients with biliary cancer – a randomised biomarker-driven clinical phase II AIO study. Eur J Cancer 2018; 92: 11-19
  • 44 Moehler M, Maderer A, Schimanski C. et al. Gemcitabine plus sorafenib versus gemcitabine alone in advanced biliary tract cancer: A double-blind placebo-controlled multicentre phase II AIO study with biomarker and serum programme. Eur J Cancer 2014; 50: 3125-3135
  • 45 Valle JW, Wasan H, Lopes A. et al. Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): a randomised phase 2 trial. Lancet Oncol 2015; 16: 967
  • 46 Alshari OM, Dawaymeh TA, Tashtush NA. et al. Completely resolved advanced biliary tract cancer after treatment by pembrolizumab: a report of two cases. Onco Targets Ther 2019; 12: 5293-5298
  • 47 Kong W, Wei J, Liu J. et al. Significant benefit of nivolumab combining radiotherapy in metastatic gallbladder cancer patient with strong PD-L1 expression: a case report. Onco Targets Ther 2019; 12: 5389-5393
  • 48 Marcus L, Lemery SJ, Keegan P. et al. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res 2019; 25: 3753-3758
  • 49 Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for Checkpoint inhibitor-based immunotherapy. Lancet Oncol 2016; 17: e542-e551
  • 50 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. Cancer J Clin 2017; 67: 7-30
  • 51 Conroy T, Desseigne F, Ychou M. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364: 1817-1825
  • 52 Von Hoff DD, Ervin T, Arena FP. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369: 1691-1703
  • 53 Humphris JL, Patch AM, Nones K. et al. Hypermutation In Pancreatic Cancer. Gastroenterology 2017; 152: 68-74.e2
  • 54 Aglietta M, Barone C, Sawyer MB. et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol 2014; 25: 1750-1755
  • 55 Kalyan A, Kircher SM, Mohindra NA. et al. Ipilimumab and gemcitabine for advanced pancreas cancer: A phase Ib study. J Clin Oncol 2016; 34: e15747-e
  • 56 Brahmer JR, Tykodi SS, Chow LQ. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2455-2465
  • 57 Weiss GJ, Waypa J, Blaydorn L. et al. A phase Ib study of pembrolizumab plus chemotherapy in patients with advanced cancer (PembroPlus). Br J Cancer 2017; 117: 33-40
  • 58 Wainberg ZA, Hochster HS, George B. et al. Phase I study of nivolumab (nivo) + nab-paclitaxel (nab-P) ± gemcitabine (Gem) in solid tumors: interim results from the pancreatic cancer (PC) cohorts. J Clin Oncol 2017; 35: 412
  • 59 Hinoda Y, Ikematsu Y, Horinochi M. et al. Increased expression of MUC1 in advanced pancreatic cancer. J Gastroenterol 2003; 38: 1162-1166
  • 60 Sahraei M, Roy LD, Curry JM. et al. MUC1 regulates PDGFA expression during pancreatic cancer progression. Oncogene 2012; 31: 4935-4945
  • 61 Behrens ME, Grandgenett PM, Bailey JM. et al. The reactive tumor microenvironment: MUC1 signaling directly reprograms transcription of CTGF. Oncogene 2010; 29: 5667-5677
  • 62 Ramanathan RK, Lee KM, McKolanis J. et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol Immunother 2005; 54: 254-264
  • 63 Gilliam AD, Broome P, Topuzov EG. et al. An international multicenter randomized controlled trial of G17DT in patients with pancreatic cancer. Pancreas 2012; 41: 374-379
  • 64 Abou-Alfa GK, Chapman PB, Feilchenfeldt J. et al. Targeting mutated K-ras in pancreatic adenocarcinoma using an adjuvant vaccine. Am J Clin Oncol 2011; 34: 321-325
  • 65 Palmer DH, Dueland S, Valle JW. et al. A phase I/II trial of TG01/GM-CSF and gemcitabine as adjuvant therapy for treating patients with resected RAS-mutant adenocarcinoma of the pancreas. J Clin Oncol 2017; 35: 4119
  • 66 Gjertsen MK, Bakka A, Breivik J. et al. Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet 1995; 346: 1399-1400
  • 67 O'Hara M, Stashwick C, Haas AR. et al. Mesothelin as a target for chimeric antigen receptor-modified T cells as anticancer therapy. Immunotherapy 2016; 8: 449-460
  • 68 Chmielewski M, Hahn O, Rappl G. et al. T cells that target carcinoembryonic antigen eradicate orthotopic pancreatic carcinomas without inducing autoimmune colitis in mice. Gastroenterology 2012; 143: 1095-1107.e2
  • 69 Abate-Daga D, Lagisetty KH, Tran E. et al. A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Hum Gene Ther 2014; 25: 1003-1102
  • 70 Maliar A, Servais C, Waks T. et al. Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 2012; 143: 1375-1384.e5
  • 71 Posey AD, Schwab RD, Boesteanu AC. et al. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 2016; 44: 1444-1454
  • 72 Morris VK, Salem ME, Nimeiri H. et al. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): a multicentre, single-arm, phase 2 study. Lancet Oncol 2017; 18: 446-453
  • 73 Ott PA, Piha-Paul SA, Munster P. et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann Oncol 2017; 28: 1036-1041
  • 74 Le DT, Uram JN, Wang H. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372: 2509-2520
  • 75 Gong J, Wang C, Lee PP. et al. Response to PD-1 blockade in microsatellite stable metastatic colorectal cancer harboring a POLE mutation. J Natl Compr Canc Netw 2017; 15: 142-147
  • 76 Tran E, Ahmadzadeh M, Lu YC. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 2015; 350: 1387-1390
  • 77 Turajlic S, Litchfield K, Xu H. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol 2017; 18: 1009-1021
  • 78 Diaz LA, Marabelle A, Delord JP. et al. Pembrolizumab therapy for microsatellite instability high (MSI-H) colorectal cancer (CRC) and non-CRC. J Clin Oncol 2017; 35: 3071
  • 79 Overman MJ, McDermott R, Leach JL. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017; 18: 1182-1191
  • 80 Overman MJ, Lonardi S, Wong KY. et al. Durable clinical benefit with nivolumab plus ipilimumab in dna mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 2018; 36: 773-779
  • 81 Lenz HJ, Van Cutsem EM, Limon L. et al. Durable clinical benefit with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy in microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer. ESMO; 2018
  • 82 Chalabi M, Fanchi L, Van den Berg J. et al. Neoadjuvant ipilimumab plus nivolumab in early stage colon cancer. ESMO; 2018
  • 83 Overman M, Kopetz ES, McDermott R. et al. Nivolumab ± ipilimumab in treatment (tx) of patients (pts) with metastatic colorectal cancer (mCRC) with and without high microsatellite instability (MSI-H): CheckMate-142 interim results. J Clin Oncol 2016; 34: 3501
  • 84 Chen EX, Jonker D, Kennecke H. et al. CCTG CO.26 trial: A phase II randomized study of durvalumab (D) plus tremelimumab (T) and best supportive care (BSC) versus BSC alone in patients (pts) with advanced refractory colorectal carcinoma (rCRC). J Clin Oncol 2019; 37: 481
  • 85 Duffy AG, Greten TF. Immunological off-target effects of standard treatments in gastrointestinal cancers. Ann Oncol 2014; 25: 24-32
  • 86 Pozzi C, Cuomo A, Spadoni I. et al. The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med 2016; 22: 624-631
  • 87 Bendell JC, Powderly JD, Lieu CH. et al. Safety and efficacy of MPDL3280A (anti-PD-L1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC). J Clin Onco 2015; 33: 704-704
  • 88 Shadhda S, Noonan AN, Bekaii-Saab T. et al. A phase II study of pembrolizumab in combination with mFOLFOX6 for patients with advanced colorectal cancer. J Clin Oncol 2017; 35: 3541
  • 89 Stein A, Binder M, Al-Batran SE. et al. Avelumab and cetuximab in combination with FOLFOX in patients with previously untreated metastatic colorectal cancer (MCRC): results of the safety run-in phase of the phase II AVETUX trial (AIO-KRK-0216). J Clin Oncol 2018; 36: 3561
  • 90 Grothey A, Tabernero J, Arnold D. et al. Fluoropyrimidine (FP) + bevacizumab (BEV) + atezolizumab vs FP/BEV in BRAFwt metastatic colorectal cancer (mCRC): findings from Cohort 2 of MODUL. Ann Oncol 2018 suppl (proffered paper)
  • 91 Ebert PJ, Cheung J, Yang Y. et al. map kinase inhibition promotes t cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 2016; 44: 609-621
  • 92 Bendell J, Kim TW, Goh BC. et al. Clinical activity and safety of cobimetinib (cobi) and atezolizumab in colorectal cancer (CRC). J Clin Oncol 2016; 34: 3502
  • 93 Bendell JC, Ciardiello F, Tabernero J. et al. Efficacy and safety results from IMblaze370, a randomised Phase III study comparing atezolizumab + cobimetinib and atezolizumab monotherapy vs regorafenib in chemotherapy-refractory metastatic colorectal cancer. Ann Oncol 2018; 29: LBA–004
  • 94 Fukuoka S, Hara H, Takahashi N. et al. Regorafenib plus nivolumab in patients with advanced gastric (GC) or colorectal cancer (CRC): An open-label, dose-finding, and dose-expansion phase 1b trial (REGONIVO, EPOC1603). J Clin Oncol 2019; 37: 2522
  • 95 Segal NH, Kemeny N, Cercek A. et al. Non-randomized phase II study to assess the efficacy of pembrolizumab (Pem) plus radiotherapy (RT) or ablation in mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) patients. J Clin Oncol 2016; 34: 2539
  • 96 Parikh AR, Clark JW, Yon-Li Wo J. A phase II study of ipilimumab and nivolumab with radiation in microsatellite stable (MSS) metastatic colorectal adenocarcinoma (mCRC). J Clin Oncol 2019; 37: 3514
  • 97 Tran E, Robbins PF, Lu YC. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 2016; 375: 2255-2262
  • 98 Grasso CS, Giannakis M, Wells DK. et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov 2018; 8: 730-749
  • 99 Tauriello DVF, Palomo-Ponce S, Stork D. et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018; 554: 538-543
  • 100 Woolston A, Khan K, Spain G. et al. Genomic and transcriptomic determinants of therapy resistance and immune landscape evolution during anti-EGFR treatment in colorectal cancer. Cancer Cell 2019; 36: 35-50