Nuklearmedizin 2020; 59(04): 300-307
DOI: 10.1055/a-1079-3855
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Is the level of diffusion restriction in celiac and cervico-thoracic sympathetic ganglia helpful in their proper recognition on PSMA ligand PET/MR?

Ist der Grad der Diffusionsrestriktion in zöliakalen und zervikothorakalen sympathischen Ganglien hilfreich für deren korrekte Identifizierung in der PSMA-Liganden PET/MRT?
Ewa J. Bialek
1   Department of Nuclear Medicine, The Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
2   Department of Nuclear Medicine, Military Institute of Medicine, Warsaw, Poland
,
Bogdan Malkowski
1   Department of Nuclear Medicine, The Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
3   Department of Positron Emission Tomography and Molecular Diagnostics, Collegium Medicum of Nicolaus Copernicus University, Bydgoszcz, Poland
› Author Affiliations
Further Information

Publication History

02 July 2019

09 December 2019

Publication Date:
31 January 2020 (online)

Abstract

Aim To check if diffusion weighted imaging (DWI) might be helpful in proper recognition of celiac (CG) and cervicothoracic (CTG) sympathetic ganglia on the whole-body multimodal PSMA-ligand PET/MR imaging, in the view of their common misleading avidity on PET potentially suggestive of malignant lesions, including metastatic lymph nodes.

Methods The thickness and the level of diffusion restriction was assessed qualitatively and quantitatively in 406 sympathetic ganglia (189 CTG in 101 males and 217 CG in 116 males) on DWI maps (b-value 0 and 800 s/mm2) and apparent diffusion coefficient (ADC) maps (mean ADC) of the whole-body PET/MR 68Ga-PSMA-11 PET/MR. To form a reference group of a matching ganglia size, the smallest lymph node was chosen from each patient with metastases and underwent the same procedure.

Results Very low and low level of diffusion restriction was noted in the majority of sympathetic ganglia (81.0 % CTG, 67.3 % CG, and 73.6 % of all). In the majority (91.7 %) of metastatic lymph nodes the level of diffusion restriction was moderate to high.

The mean ADC values in sympathetic ganglia were statistically significantly higher in CTG, CG and all ganglia than in metastatic lymph nodes (p < 0.001; the effect size was large).

Conclusions Sympathetic celiac and cervicothoracic ganglia present very low and low level of diffusion restriction in visual DWI assessment, and significantly higher than metastatic lymph nodes mean ADC values in the majority of cases, which may serve as additional factors aiding differential diagnosis on multimodal PSMA-ligand PET/MR imaging.

Therefore, PSMA-ligand PET/MR appears potentially superior to PSMA-ligand PET/CT in proper identification of sympathetic ganglia.

Zusammenfasung

Ziel Überprüfung des Wertes der Diffusionsbildgebung (DWI) bei der korrekten Identifizierung von zöliakalen (CG) und zervikothorakalen (CTG) sympathischen Ganglien in der multimodalen Ganzkörper-PSMA-Liganden-PET/MRT, angesichts ihres häufig irreführenden Uptakes im PET, was möglicherweise für bösartige Läsionen wie Lymphknotenmetastasen sprechen kann.

Methoden Die Dicke und der Grad der Diffusionsrestriktion wurde qualitativ und quantitativ in 406 sympathischen Ganglien (189 CTG bei 101 Männern und 217 CG bei 116 Männern) auf DWI-Maps (b-Wert 0 und 800s/mm2) und ADC (“apparent diffusion coefficient”)-Maps (mittlerer ADC) des Ganzkörper-PET/MR 68Ga-PSMA-11 PET/MR bewertet. Um eine Referenzgruppe mit übereinstimmender Gangliengröße zu bilden, wurde von jedem Patienten mit Metastasen der kleinste Lymphknoten ausgewählt und dem gleichen Verfahren unterzogen.

Ergebnisse Bei der Mehrheit der sympathischen Ganglien (81,0 % der CTG, 67,3 % der CG und 73,6 % von allen) wurde eine sehr geringe bzw. niedrige Diffusionsrestriktion festgestellt. Bei den meisten Lymphknotenmetastasen (91,7 %) war der Grad der Diffusionsrestriktion moderat bis hoch. Die mittleren ADC-Werte in den sympathischen Ganglien waren in CTG, in CG und in allen Ganglien statistisch signifikant höher als in den Lymphknotenmetastasen (p < 0.001; bei großer Effektstärke).

Schlussfolgerungen Sympathische zöliakale und zervikothorakale Ganglien zeigen in der visuellen DWI-Bewertung eine sehr niedrige bzw. niedrige Diffusionsrestriktion und in den meisten Fällen signifikant höhere mittlere ADC-Werte als Lymphknotenmetastasen und kann somit als zusätzliche Faktor bei der Differentialdiagnose in der multimodalen PSMA-Liganden-PET/MR-Bildgebung dienen. Daher scheint für eine korrekte Identifizierung von sympathischen Ganglien die PSMA-Liganden PET/MRT der PSMA-Liganden PET/CT potentiell überlegen zu sein.

 
  • Literature

  • 1 Abtahi SM, Elmi A, Hedgire SS. et al. Depiction of celiac ganglia on positron emission tomography and computed tomography in patients with lung cancer. Clin Imaging 2014; 38 (03) 292-295 . doi:10.1016/j.clinimag.2013.12.017
  • 2 Hogan QH, Erickson SJ. MR imaging of the stellate ganglion: normal appearance. Am J Roentgenol 1992; 158 (03) 655-659 . Erratum in: Am J Roentgenol 1992; 158(6): 1320. doi:10.2214/ajr.158.3.1739014
  • 3 Wang ZJ, Webb EM, Westphalen AC. et al. Multi-detector row computed tomographic appearance of celiac ganglia. Comput Assist Tomogr 2010; 34 (03) 343-347 . doi:10.1097/RCT.0b013e3181d26ddd
  • 4 Zhang XM, Zhao QH, Zeng NL. et al. The celiac ganglia: anatomic study using MRI in cadavers. Am J Roentgenol 2006; 186 (06) 1520-1523 . doi:10.2214/Am J Roentgenol.04.1765
  • 5 Beheshti M, Rezaee A, Langsteger W. 68Ga-PSMA-HBED Uptake on Cervicothoracic (Stellate) Ganglia, a Common Pitfall on PET/CT. Clin Nucl Med 2017; 42 (03) 195-196 . doi:10.1097/RLU.0000000000001518
  • 6 Bialek EJ, Malkowski B. Celiac ganglia: can they be misinterpreted on multimodal 68Ga-PSMA-11 PET/MR?. Nucl Med Commun 2019; 40: 175-184 . doi:10.1097/MNM
  • 7 Kanthan GL, Hsiao E, Vu D. et al. Uptake in sympathetic ganglia on 68Ga-PSMA-HBED PET/CT: A potential pitfall in scan interpretation. J Med Imaging Radiat Oncol 2017; 61: 732-738 . doi:10.1111/1754-9485.12622
  • 8 Krohn T, Verburg FA, Pufe T. et al. [(68)Ga]PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice. Eur J Nucl Med Mol Imaging 2015; 42 (02) 210-214 . doi:10.1007/s00259-014-2915-3
  • 9 Rischpler C, Beck TI, Okamoto S. et al. 68Ga-PSMA-HBED-CC uptake in cervical, coeliac and sacral ganglia as an important pitfall in prostate cancer PET imaging. J Nucl Med 2018; 59 (09) 1406-1411 . doi:10.2967/jnumed.117.204677
  • 10 Moreau B, Iannessi A, Hoog C. et al. How reliable are ADC measurements? A phantom and clinical study of cervical lymph nodes. Eur Radiol 2018; 28 (08) 3362-3371 . doi:10.1007/s00330-017-5265-2
  • 11 Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol 2007; 188 (06) 1622-1635 . doi:10.1259/bjr/91771639
  • 12 Albano D, Patti C, Matranga D. et al. Whole-body diffusion-weighted MR and FDG-PET/CT in Hodgkin Lymphoma: Predictive role before treatment and early assessment after two courses of ABVD. Eur J Radiol 2018; 103: 90-98 . doi:10.1016/j.ejrad.2018.04.014
  • 13 Thoeny HC, Forstner R, De Keyzer F. Genitourinary applications of diffusion-weighted MR imaging in the pelvis. Radiology 2012; 263 (02) 326-342 . doi:10.1148/radiol.12110446
  • 14 Wang YJ, Xu XQ, Hu H. et al. Histogram analysis of apparent diffusion coefficient maps for the differentiation between lymphoma and metastatic lymph nodes of squamous cell carcinoma in head and neck region. Acta Radiol 2018; 59 (06) 672-680 . doi:10.1177/0284185117730688
  • 15 Addley H, Moyle P, Freeman S. Diffusion-weighted imaging in gynaecological malignancy. Clin Radiol 2017; 72 (11) 981-990 . doi:10.1016/j.crad.2017.07.014
  • 16 van der Hoorn A, van Laar PJ, Holtman GA. et al. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with head and neck tumors, a systematic review and meta-analysis. PLoS One 2017; 12 (05) e0177986 . doi:10.1371/journal.pone.0177986
  • 17 Kwak JT, Sankineni S, Xu S. et al. Prostate Cancer: A Correlative Study of Multiparametric MR Imaging and Digital Histopathology. Radiology 2017; 285 (01) 147-156 . doi: 10.1148/radiol.2017160906
  • 18 Peng J, Li JJ, Li J. et al. Could ADC values be a promising diagnostic criterion for differentiating malignant and benign hepatic lesions in Asian populations: A meta-analysis. Medicine (Baltimore) 2016; 95 (48) e5470 . 10.1097/MD. doi:10.1097/MD.0000000000005470
  • 19 Scalco E, Marzi S, Sanguineti G. et al. Characterization of cervical lymph-nodes using a multi-parametric and multi-modal approach for an early prediction of tumor response to chemo-radiotherapy. Phys Med 2016; 32 (12) 1672-1680 . doi:10.1016/j.ejmp.2016.09.003
  • 20 Kolff-Gart AS, Pouwels PJ, Noij DP. et al. Diffusion-weighted imaging of the head and neck in healthy subjects: reproducibility of ADC values in different MRI systems and repeat sessions. AJNR Am J Neuroradiol 2015; 36 (02) 384-390 . doi:10.3174/ajnr.A4114
  • 21 Brynolfsson P, Nilsson D, Torheim T. et al. Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters. Sci Rep 2017; 7 (01) 4041 . doi:10.1038/s41598-017-04151-4
  • 22 Malyarenko D, Fedorov A, Bell L. et al. Toward uniform implementation of parametric map Digital Imaging and Communication in Medicine standard in multisite quantitative diffusion imaging studies. J Med Imaging (Bellingham) 2018; 5 (01) 011006 . doi:10.1117/1.JMI.5.1.011006
  • 23 Schmeel FC. Variability in quantitative diffusion-weighted MR imaging (DWI) across different scanners and imaging sites: is there a potential consensus that can help reducing the limits of expected bias?. Eur Radiol 2018; DOI: 10.1007/s00330-018-5866-4.
  • 24 Shukla-Dave A, Obuchowski NA, Chenevert TL. et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging 2018; DOI: 10.1002/jmri.26518.
  • 25 deSouza NM, Winfield JM, Waterton JC. et al. Implementing diffusion-weighted MRI for body imaging in prospective multicentre trials: current considerations and future perspectives. Eur Radiol 2018; 28 (03) 1118-1131 . doi:10.1007/s00330-017-4972-z
  • 26 Rautiainen S, Könönen M, Sironen R. et al. Preoperative axillary staging with 3.0-T breast MRI: clinical value of diffusion imaging and apparent diffusion coefficient. PLoS One 2015; 10 (03) e0122516 . doi:10.1371/journal.pone.0122516. Erratum in: PLoS One. 2015;10(7):e0133111
  • 27 Vallini V, Ortori S, Boraschi P. et al. Staging of pelvic lymph nodes in patients with prostate cancer: Usefulness of multiple b value SE-EPI diffusion-weighted imaging on a 3.0 T MR system. Eur J Radiol Open 2015; 3: 16-21 . doi:10.1016/j.ejro.2015.11.004
  • 28 Jin GQ, Yang J, Liu LD. et al. The diagnostic value of 1.5-T diffusion-weighted MR imaging in detecting 5 to 10 mm metastatic cervical lymph nodes of nasopharyngeal carcinoma. Medicine (Baltimore) 2016; 95 (32) e4286 . doi:10.1097/MD.0000000000004286
  • 29 Barchetti F, Pranno N, Giraldi G. et al. The role of 3 Tesla diffusion-weighted imaging in the differential diagnosis of benign versus malignant cervical lymph nodes in patients with head and neck squamous cell carcinoma. Biomed Res Int 2014; 2014: 532095 . doi:10.1155/2014/532095
  • 30 Gong J, Cao W, Zhang Z. et al. Diagnostic efficacy of whole-body diffusion-weighted imaging in the detection of tumour recurrence and metastasis by comparison with 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography or computed tomography in patients with gastrointestinal cancer. Gastroenterol Rep (Oxf) 2015; 3 (02) 128-135 . doi:10.1093/gastro/gou078
  • 31 Suh CH, Choi YJ, Baek JH. et al. The Diagnostic Value of Diffusion-Weighted Imaging in Differentiating Metastatic Lymph Nodes of Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol 2018; 39 (10) 1889-1895 . doi:10.3174/ajnr.A5813
  • 32 Mundada P, Varoquaux AD, Lenoir V. et al. Utility of MRI with morphologic and diffusion weighted imaging in the detection of post-treatment nodal disease in head and neck squamous cell carcinoma. Eur J Radiol 2018; 101: 162-169 . doi:10.1016/j.ejrad.2018.02.026
  • 33 Zhang Q, Zang S, Zhang C. et al. Comparison of 68Ga-PSMA-11 PET-CT with mpMRI for preoperative lymph node staging in patients with intermediate to high-risk prostate cancer. J Transl Med 2017; 15 (01) 230 . doi:10.1186/s12967-017-1333-2
  • 34 Lee MC, Tsai HY, Chuang KS. et al. Prediction of nodal metastasis in head and neck cancer using a 3T MRI ADC map. AJNR Am J Neuroradiol 2013; 34 (04) 864-869 . doi:10.3174/ajnr.A3281
  • 35 Qi LP, Yan WP, Chen KN. et al. Discrimination of Malignant versus Benign Mediastinal Lymph Nodes Using Diffusion MRI with an IVIM Model. Eur Radiol 2017; DOI: 10.1007/s00330-017-5049-8.
  • 36 Ye X, Chen S, Tian Y. et al. A preliminary exploration of the intravoxel incoherent motion applied in the preoperative evaluation of mediastinal lymph node metastasis of lung cancer. J Thorac Dis 2017; 9 (04) 1073-1080 . doi:10.21037/jtd.2017.03.110
  • 37 Morine Y, Shimada M, Imura S. et al. Detection of Lymph Nodes Metastasis in Biliary Carcinomas: Morphological Criteria by MDCT and the Clinical Impact of DWI-MRI. Hepatogastroenterology 2015; 62 (140) 777-781
  • 38 Rong D, Mao Y, Hu W. et al. Intravoxel incoherent motion magnetic resonance imaging for differentiating metastatic and non-metastatic lymph nodes in pancreatic ductal adenocarcinoma. Eur Radiol 2018; 28 (07) 2781-2789 . doi:10.1007/s00330-017-5259-0
  • 39 Vag T, Heck MM, Beer AJ. et al. Preoperative lymph node staging in patients with primary prostate cancer: comparison and correlation of quantitative imaging parameters in diffusion-weighted imaging and 11C-choline PET/CT. Eur Radiol 2014; 24 (08) 1821-1826 . doi:10.1007/s00330-014-3240-8
  • 40 Beer AJ, Eiber M, Souvatzoglou M. et al. Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in (11)C-choline PET/CT are correlated in pelvic lymph nodes in patients with prostate cancer. Mol Imaging Biol 2011; 13 (02) 352-361 . doi:10.1007/s11307-010-0337-6
  • 41 Eiber M, Beer AJ, Holzapfel K. et al. Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest Radiol 2010; 45: 15e23 . doi:10.1097/RLI.0b013e3181bbdc2f
  • 42 He XQ, Wei LN. Diagnostic value of lymph node metastasis by diffusion-weighted magnetic resonance imaging in cervical cancer. J Cancer Res Ther 2016; 12 (01) 77-83 . doi:10.4103/0973-1482.148726
  • 43 Razek AA, Lattif MA, Denewer A. et al. Assessment of axillary lymph nodes in patients with breast cancer with diffusion-weighted MR imaging in combination with routine and dynamic contrast MR imaging. Breast Cancer 2016; 23 (03) 525-532 . doi:10.1007/s12282-015-0598-7
  • 44 Kim SH, Shin HJ, Shin KC. et al. Diagnostic Performance of Fused Diffusion-Weighted Imaging Using T1-Weighted Imaging for Axillary Nodal Staging in Patients With Early Breast Cancer. Clin Breast Cancer 2017; 17 (02) 154-163 . doi:10.1016/j.clbc.2016.10.010
  • 45 Chung J, Youk JH, Kim JA. et al. Role of diffusion-weighted MRI: predicting axillary lymph node metastases in breast cancer. Acta Radiol 2014; 55 (08) 909-916 . doi:10.1177/0284185113509094
  • 46 Kamitani T, Hatakenaka M, Yabuuchi H. et al. Detection of axillary node metastasis using diffusion-weighted MRI in breast cancer. Clin Imaging 2013; 37 (01) 56-61 . doi:10.1016/j.clinimag.2012.02.014
  • 47 Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007; 48 (06) 932-945 . doi:10.2967/jnumed.106.035774
  • 48 Li H, Liu XW, Geng ZJ. et al. Diffusion-weighted imaging to differentiate metastatic from non-metastatic retropharyngeal lymph nodes in nasopharyngeal carcinoma. Dentomaxillofac Radiol 2015; 44 (03) 20140126 . doi:10.1259/dmfr.20140126