TumorDiagnostik & Therapie 2021; 42(09): 646-649
DOI: 10.1055/a-1257-7670
Schwerpunkt Gastrointestinale Tumoren

Die Rolle des Mikrobioms in der gastrointestinalen Karzinogenese

Riccardo Vasapolli
,
Lukas Macke
,
Christian Schulz

Unter dem Begriff „menschliches Mikrobiom“ wird der Komplex aus Mikroorganismen – Bakterien, Viren, Pilze, Protozoen und Archaeen –, welche die Oberflächen, Gewebe und Flüssigkeiten des menschlichen Körpers besiedeln, zusammengefasst. Sie haben eine offensichtliche Rolle bei der Kanzerogenese und mit der Verbreitung neuer Hochdurchsatz-Sequenzierungsmethoden ist die Untersuchung dieser mikrobiellen Gemeinschaften wesentlich einfacher geworden.



Publication History

Article published online:
28 October 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207-214
  • 2 Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012; 13: 260-270
  • 3 Bray F, Ferlay J, Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cance J Clin 2018; 68: 394-424
  • 4 Forouzanfar MH, Afshin A, Alexander LT. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1659-1724
  • 5 Jasperson KW, Tuohy TM, Neklason DW. et al. Hereditary and familial colon cancer. Gastroenterol 2010; 138: 2044-2058
  • 6 Plummer M, de Martel C, Vignat J. et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Global Health 2016; 4: e609-e616
  • 7 Plummer M, Franceschi S, Vignat J. et al. Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer 2015; 136: 487-490
  • 8 Malfertheiner P, Megraud F, O'Morain CA. et al. Management of Helicobacter pylori infection – the Maastricht V/Florence Consensus Report. Gut 2017; 66: 6-30
  • 9 Correa P, Piazuelo MB. The gastric precancerous cascade. J Dig Dis 2012; 13: 2-9
  • 10 Raderer M, Kiesewetter B, Ferreri AJ. Clinicopathologic characteristics and treatment of marginal zone lymphoma of mucosa-associated lymphoid tissue [MALT lymphoma]. CA Cancer J Clin 2016; 66: 153-171
  • 11 Zucca E, Copie-Bergman C, Ricardi U. et al. Gastric marginal zone lymphoma of MALT type: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013; 24 (Suppl. 06) vi144-148
  • 12 Bik EM, Eckburg PB, Gill SR. et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci 2006; 103: 732-737
  • 13 Andersson AF, Lindberg M, Jakobsson H. et al. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PloS one 2008; 3: e2836-e2836
  • 14 Schulz C, Schütte K, Koch N. et al. The active bacterial assemblages of the upper GI tract in individuals with and without Helicobacter infection. Gut 2018; 67: 216-225
  • 15 Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I. et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 2018; 67: 226-236
  • 16 Coker OO, Dai Z, Nie Y. et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 2018; 67: 1024
  • 17 Liu X, Shao L, Liu X. et al. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBio Med 2019; 40: 336-348
  • 18 Ling Z, Shao L, Liu X. et al. Regulatory T Cells and Plasmacytoid Dendritic Cells Within the Tumor Microenvironment in Gastric Cancer Are Correlated With Gastric Microbiota Dysbiosis: A Preliminary Study. Front Immunol 2019; 10: 533-533
  • 19 Gunathilake MN, Lee J, Choi IJ. et al. Association between the relative abundance of gastric microbiota and the risk of gastric cancer: a case-control study. Sci Rep 2019; 9: 13589-13589
  • 20 Vasapolli R, Schütte K, Schulz C. et al. Analysis of Transcriptionally Active Bacteria Throughout the Gastrointestinal Tract of Healthy Individuals. Gastroenterol 2019; 157: 1081-1092.e3
  • 21 Lertpiriyapong K, Whary MT, Muthupalani S. et al. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut 2014; 63: 54-63
  • 22 Yang L, Lu X, Nossa CW. et al. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterol 2009; 137: 588-597
  • 23 Elliott DRF, Walker AW, O'Donovan M. et al. A non-endoscopic device to sample the oesophageal microbiota: a case-control study. Lancet Gastroenterol Hepatol 2017; 2: 32-42
  • 24 Bogaert J, Prenen H. Molecular genetics of colorectal cancer. Ann Gastroenterol 2014; 27: 9-14
  • 25 Yu J, Feng Q, Wong SH. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017; 66: 70-78
  • 26 Chen W, Liu F, Ling Z. et al. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 2012; 7: e39743
  • 27 Lu Y, Chen J, Zheng J. et al. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci Rep 2016; 6: 26337
  • 28 He Z, Gharaibeh RZ, Newsome RC. et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 2019; 68: 289-300
  • 29 Tomkovich S, Yang Y, Winglee K. et al. Locoregional Effects of Microbiota in a Preclinical Model of Colon Carcinogenesis. Cancer Res 2017; 77: 2620-2632
  • 30 Castellarin M, Warren RL, Freeman JD. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012; 22: 299-306
  • 31 Flanagan L, Schmid J, Ebert M. et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis 2014; 33: 1381-1390
  • 32 Mima K, Sukawa Y, Nishihara R. et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol 2015; 1: 653-661
  • 33 Mima K, Nishihara R, Qian ZR. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016; 65: 1973-1980
  • 34 Bonnet M, Buc E, Sauvanet P. et al. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res 2014; 20: 859-867
  • 35 Kohoutova D, Smajs D, Moravkova P. et al. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect Dis 2014; 14: 733
  • 36 Toprak NU, Yagci A, Gulluoglu BM. et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 2006; 12: 782-786
  • 37 Boleij A, Hechenbleikner EM, Goodwin AC. et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015; 60: 208-215
  • 38 Pleguezuelos-Manzano C, Puschhof J, Rosendahl HA. et al. Mutational signature in colorectal cancer caused by genotoxic pks[+] E. coli. Nature 2020; 580: 269-273