Synlett 2021; 32(07): 738-742
DOI: 10.1055/a-1327-6933
letter

Synthesis of Indolo[1,2-a]quinoxalinones through Palladium/Copper-Cocatalyzed Oxidative Isocyanide-Insertion Cyclization of Indoles and Hydrolysis of Enamines

Xuan Sha
,
Jie Ren
,
Yi-ran Hu
,
Yun-yi Zhao
,
Shi-ying Wu
,
Rui Yang
,
Yao Chen
,
Fei Ji
This work was supported by the National Natural Science Foundation of China (No. 81903498) and the Innovation and Entrepreneurship Training Program for Undergraduates (No. 202010316248).


Abstract

A novel Pd/Cu-cocatalyzed isocyanide-insertion cyclization of indoles and hydrolysis of enamines has been developed for the construction of indolo[1,2-a]quinoxalinones. A secondary amine group on the N-phenylindole skeleton acts as an important directing groups that participates in activation of the C(2)-position of the indole and the subsequent isocyanide-insertion cyclization. The fragile generated enamine bond is easily hydrolyzed by the acid medium to give the corresponding quinoxalinone skeleton. This regioselective and high-yielding transformation, which avoids the use of hazardous CO gas, might be extendable to syntheses of natural polycyclic products.

Supporting Information



Publication History

Received: 27 October 2020

Accepted after revision: 02 December 2020

Accepted Manuscript online:
02 December 2020

Article published online:
05 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 1b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 1c Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
    • 2a Carta A, Piras S, Loriga G, Paglietti G. Mini-Rev. Med. Chem. 2006; 6: 1179
    • 2b Dudash J, Zhang YZ, Moore JB, Look R, Liang Y, Beavers MP, Conway BR, Rybczynski PJ, Demarest KT. Bioorg. Med. Chem. Lett. 2005; 15: 4790
    • 2c Willardsen JA, Dudley DA, Cody WL, Chi LG, McClanahan TB, Mertz TE, Potoczak RE, Narasimhan LS, Holland DR, Rapundalo ST, Edmunds JJ. J. Med. Chem. 2004; 47: 4089
    • 3a Chandrasekhar A, Sankararaman S. Org. Biomol. Chem. 2020; 18: 1612
    • 3b Mu Q.-C, Nie Y.-X, Bai X.-F, Chen J.-C, Yang L, Xu Z, Li L, Xia C.-G, Xu L.-W. Chem. Sci. 2019; 10: 9292
    • 3c Abbiati G, Beccalli EM, Brooggini G, Paladino G, Rossi E. Synthesis 2005; 2881
    • 3d Kong L, Sun Y, Zheng Z, Tang R, Wang M, Li Y. Org. Lett. 2018; 20: 5251
    • 3e Gogoi A, Sau P, Ali W, Guin S, Patel BK. Eur. J. Org. Chem. 2016; 1449
    • 3f Liu W, Bang J, Zhang Y, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 14137
    • 3g Balalaie S, Bararjanian M, Hosseinzadeh S, Rominger F, Bijanzadeh H, Wolf RE. Tetrahedron 2011; 67: 7294
    • 4a Lygin AV, de Meijere A. Angew. Chem. Int. Ed. 2010; 49: 9094
    • 4b Yue T, Wang M.-X, Wang D.-X, Masson G, Zhu J. J. Org. Chem. 2009; 74: 8396
    • 4c Mihara H, Xu Y, Shepherd NE, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 8384
    • 4d Scheffelaar R, Paravidino M, Muilwijk D, Lutz M, Spek AL, de Kanter FJ. J, Orru RV. A, Ruijter E. Org. Lett. 2009; 11: 125
    • 4e Pirali T, Tron G, Masson CG, Zhu J. Org. Lett. 2007; 9: 5275
    • 4f Wang S.-X, Wang M.-X, Wang D.-X, Zhu J. Org. Lett. 2007; 9: 3615
    • 4g Janvier P, Bois-Choussy M, Bienaymé H, Zhu J. Angew. Chem. Int. Ed. 2003; 42: 811
    • 4h Dömling A. Chem. Rev. 2006; 106: 17
    • 5a Vlaar T, Maes BU. W, Ruijter E, Orru RV. A. Angew. Chem. Int. Ed. 2013; 52: 7084
    • 5b Lang S. Chem. Soc. Rev. 2013; 42: 4867
    • 5c Qiu G, Ding Q, Wu J. Chem. Soc. Rev. 2013; 42: 5257
    • 5d Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VY. Chem. Rev. 2015; 115: 2698
    • 6a Wang Y, Zhu Q. Adv. Synth. Catal. 2012; 354: 1902
    • 6b Tyagi V, Khan S, Giri A, Gauniyal HM, Sridhar B, Chauhan PM. S. Org. Lett. 2012; 14: 3126
    • 6c Qiu G, He Y, Wu J. Chem. Commun. 2012; 48: 3836
    • 6d Vlaar T, Ruijter E, Znabet A, Janssen E, de Kanter FJ. J, Maes BU. W, Orru RV. A. Org. Lett. 2011; 13: 6496
    • 6e Tobisu M, Imoto S, Ito S, Chatani N. J. Org. Chem. 2010; 75: 4835
    • 6f Qiu G, Liu G, Pu S, Wu J. Chem. Commun. 2012; 48: 2903
    • 6g Nanjo T, Tsukano C, Takemoto Y. Org. Lett. 2012; 14: 4270
    • 6h Liu B, Li Y, Jiang H, Yin M, Huang H. Adv. Synth. Catal. 2012; 354: 2288
    • 6i Hu Z, Liang D, Zhao J, Huang J, Zhu Q. Chem. Commun. 2012; 48: 7371
    • 6j Zhu C, Xie W, Falck JR. Chem. Eur. J. 2011; 17: 12591
    • 6k Van Baelen G, Kuijer S, Rýček L, Sergeyev S, Janssen E, de Kanter FJ. J, Maes BU. W, Ruijter E, Orru RV. A. Chem. Eur. J. 2011; 17: 15039
    • 6l Cai Q, Zhou F, Xu T, Fu L, Ding K. Org. Lett. 2011; 13: 340
    • 6m Boissarie PJ, Hamilton ZE, Lang S, Murphy JA, Suckling CJ. Org. Lett. 2011; 13: 6256
    • 6n Vlaar T, Mampuys P, Helliwell M, Maes BU. W, Orru RV. A, Ruijter E. J. Org. Chem. 2013; 78: 6735
    • 6o Collet JW, van der Nol EA, Roose TR, Maes BU. W, Ruijter E, Orru RV. A. J. Org. Chem. 2020; 85: 7378
    • 6p Collet JW, Morel B, Lin H.-C, Roose TR, Mampuys P, Orru RV. A, Ruijter E, Maes BU. W. Org. Lett. 2020; 22: 914
    • 6q Ren Z, Cai S, Liu Y, Xie Y, Yuan D, Lei M, He P, Wang L. J. Org. Chem. 2020; 85: 11014
  • 7 Peng J, Liu L, Hu Z, Huang J, Zhu Q. Chem. Commun. 2012; 48: 3772
    • 8a Peng J, Zhao J, Hu Z, Liang D, Huang J, Zhu Q. Org. Lett. 2012; 14: 4966
    • 8b Xu S, Huang X, Hong X, Xu B. Org. Lett. 2012; 14: 4614
    • 8c Hong X, Wang H, Qian G, Tan Q, Xu B. J. Org. Chem. 2014; 79: 3228
    • 8d Tang T, Jiang X, Wang J.-M, Sun Y, Zhu Y.-M. Tetrahedron 2014; 70: 2999
    • 9a Ji F, Lv M.-F, Yi W.-B, Cai C. Org. Biomol. Chem. 2014; 12: 5766
    • 9b Ji F, Lv M.-F, Yi W.-B, Cai C. Adv. Synth. Catal. 2013; 355: 3401
  • 10 5-Methylindolo[1,2-a]quinoxalin-6(5H)-one (3a): Typical Procedure A 10 mL oven-dried Schlenk round-bottomed flask was charged with amine 1a (0.5 mmol), Pd(TFA)2 (10 mol%), Cu(OAc)2·xH2O (2.0 equiv), t-BuN≡C (2a; 0.75 mmol), toluene (2.5 mL), and HOAc (0.5 mmol). The mixture was flushed three times with O2 from a balloon, then stirred at 80 °C for 12 h under O2. When the reaction was complete, the mixture was cooled to rt and filtered through diatomite. The filtrate was concentrated under reduced pressure, and the crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:10)] to give a white solid; yield: 93 mg (75%); mp 163.3–165.3 °C. 1H NMR (300 MHz, CDCl3): δ = 3.77 (s, 3 H), 7.31–7.46 (m, 4 H), 7.57 (t, J = 8.4 Hz, 1 H), 7.65 (s, 1 H), 7.95 (d, J = 7.8 Hz, 1 H), 8.34 (d, J = 8.7 Hz, 1 H), 8.41–8.44 (m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 29.0, 106.8, 114.2, 115.4, 115.6, 122.4, 123.2, 123.3, 124.2, 125.3, 126.7, 128.1, 129.2, 129.8, 134.2, 156.6. HRMS (ESI): m/z [M + H]+ calcd for C16H13N2O: 249.1028; found: 249.1026.