Synlett 2021; 32(15): 1551-1554
DOI: 10.1055/a-1336-8034
cluster
Modern Nickel-Catalyzed Reactions

Nickel-Catalyzed Carboxylation of Conjugated Dienes with Carbon Dioxide and DIBAL-H for the Synthesis of β,γ-Unsaturated Carboxylic Acids

Ying Luo
,
Bun Chan
,
Tsutomu Fukuda
,
Gen Onodera
,
Masanari Kimura
This work was supported by a Grant-in-Aid for Scientific Research (B) (JP18H01981) from JSPS and partly by a Grant-in-Aid for Scientific Research on Innovative Areas, ‘Precise Formation of a Catalyst Having a Specified Field for Use in Extremely Difficult Substrate Conversion Reactions’ (18H04266) from MEXT. This work was also carried out as part of the research program on Artificial Photosynthesis at Osaka City University.


Abstract

Conjugated dienes underwent Ni-catalyst-promoted 1,2-hydrocarboxylation in a 1:1 ratio with carbon dioxide under atmospheric pressure in the presence of diisobutylaluminum hydride (DIBAL-H) to give the corresponding β,γ-unsaturated carboxylic acids, without dimerization or oligomerization of the conjugated diene.

Supporting Information



Publication History

Received: 15 November 2020

Accepted after revision: 14 December 2020

Accepted Manuscript online:
14 December 2020

Article published online:
12 January 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Aresta M, Dibenedetto A. Dalton Trans. 2007; 2975
    • 1b Zhang L, Hou Z. Chem. Sci. 2013; 4: 3395
    • 1c Green Carbon Dioxide: Advances in CO2 Utilization . Centi G, Perathoner S. Wiley; Hoboken: 2014
    • 1d Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933

      For recent catalytic coupling reactions of carbon dioxide with unsaturated hydrocarbon compounds, see:
    • 2a Ostapowicz TG, Schmitz M, Krystof M, Klankermayer J, Leitner W. Angew. Chem. Int. Ed. 2013; 52: 12119
    • 2b Zhang L, Hou Z. New and Future Developments in Catalysis: Activation of Carbon Dioxide . Suib SL. Elsevier; Amsterdam: 2013. Chap. 9, 253
    • 2c Wu L, Liu Q, Fleischer I, Jackstell R, Beller M. Nat. Commun. 2014; 5: 3091
    • 2d Gaydou M, Moragas T, Juliá-Hernández F, Martin R. J. Am. Chem. Soc. 2017; 139: 12161
    • 2e Zhang L, Hou Z. Curr. Opin. Green Sustainable Chem. 2017; 3: 17
    • 2f Kuge K, Luo Y, Fujita Y, Mori Y, Onodera G, Kimura M. Org. Lett. 2017; 19: 854
    • 2g Ye J.-H, Miao M, Huang H, Yan S.-S, Yin Z.-B, Zhou W.-J, Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15416
    • 2h Yan S.-S, Fu Q, Liao L.-L, Sun G.-Q, Ye J.-H, Gong L, Bo-Xue Y.-Z, Yu D.-G. Coord. Chem. Rev. 2018; 374: 439
    • 3a Sato Y, Takimoto M, Hayashi K, Katsuhara T, Takagi K, Mori M. J. Am. Chem. Soc. 1994; 116: 9771
    • 3b Takimoto M, Hiraga Y, Sato Y, Mori M. Tetrahedron Lett. 1998; 39: 4543
    • 3c Löber O, Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 4366
    • 3d Shibata K, Kimura M, Kojima K, Tanaka S, Tamaru Y. J. Organomet. Chem. 2001; 624: 348
    • 3e Kimura M, Ezoe A, Tanaka S, Tamaru Y. Angew. Chem. Int. Ed. 2001; 40: 3600
    • 3f Sato Y, Saito N, Mori M. J. Org. Chem. 2002; 67: 9310
    • 3g Ezoe A, Kimura M, Inoue T, Mori M, Tamaru Y. Angew. Chem. Int. Ed. 2002; 41: 2784
    • 3h Parker SE, Börgel J, Ritter T. J. Am. Chem. Soc. 2014; 136: 4857
    • 3i Maza RJ, Davenport E, Miralles N, Carbó JJ, Fernández E. Org. Lett. 2019; 21: 2251
    • 4a Gui Y.-Y, Hu N.-F, Chen X.-W, Liao L.-L, Ju T, Ye J.-H, Zhang Z, Li J, Yu D.-G. J. Am. Chem. Soc. 2017; 139: 17011
    • 4b Mori Y, Shigeno C, Luo Y, Chan B, Onodera G, Kimura M. Synlett 2018; 29: 742
    • 5a Tenaglia A, Brun P, Waegell B. J. Organomet. Chem. 1985; 285: 343
    • 5b Hoberg H, Gross S, Milchereit A. Angew. Chem. Int. Ed. 1987; 26: 571
    • 6a Jolly PW, Wilke G. The Organic Chemistry of Nickel . Academic Press; New York: 1974
    • 6b Keim W. Angew. Chem. Int. Ed. 1990; 29: 235
    • 6c Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
    • 6d Kimura M, Tamaru Y. Modern Organonickel Chemistry . Tamaru Y. Wiley-VCH; Weinheim: 2005. Chap. 5, 137
    • 7a Kimura M, Matsuo S, Shibata K, Tamaru Y. Angew. Chem. Int. Ed. 1999; 38: 3386
    • 7b Kimura M, Kojima K, Inoue T, Tamaru Y. Synthesis 2004; 3089
    • 7c Takimoto M, Kajima Y, Sato Y, Mori M. J. Org. Chem. 2005; 70: 8605
    • 7d Kimura M, Ezoe A, Mori M, Tamaru Y. J. Am. Chem. Soc. 2005; 127: 201
    • 7e Kojima K, Kimura M, Tamaru Y. Chem. Commun. 2005; 4717
    • 7f Kimura M, Ezoe A, Mori M, Iwata K, Tamaru Y. J. Am. Chem. Soc. 2006; 128: 8559
    • 9a Hoberg H, Jenni K. J. Organomet. Chem. 1987; 322: 193
    • 9b Gao Y, Iijima S, Urabe H, Sato F. Inorg. Chim. Acta 1994; 222: 145
  • 10 Takimoto M, Mori M. J. Am. Chem. Soc. 2001; 123: 2895
  • 11 Takaya J, Sasano K, Iwasawa N. Org. Lett. 2011; 13: 1698
  • 12 Tortajada A, Ninokata R, Martin R. J. Am. Chem. Soc. 2018; 140: 2050
  • 13 2,7-Dimethyl-3-methyleneoct-6-enoic Acid (2a) and 2,6-Dimethyl-2-vinylhept-5-enoic acid (3a): Typical Procedure (Table [1], Entry 1) An oven-dried flask charged with Ni(cod)2 (13.7 mg, 0.05 mmol) was subjected to three cycles of evacuation and filling with CO2. Anhyd hexane (2 mL), myrcene (540 mg, 4.0 mmol), and a 19% solution of DIBAL-H in hexane (1 mL, 1 mmol) were added under a constant flow of CO2. The mixture was stirred at rt for 24 h, then 2 M aq NaOH was added and the mixture was diluted with H2O and extracted with EtOAc (×3). The aqueous phases were then neutralized with 2 M aq HCl and extracted with EtOAc (×3). The combined organic phases were washed with brine, dried (MgSO4), filtered, and concentrated under reduced pressure. The residual oil was placed in a Kugelrohr (30 Torr, 90 °C) to remove the isovaleric acid byproduct. A 5:1 mixture of 2a and 3a was obtained in the last bulb as a yellow liquid; yield: 0.13 g (70%). 2a 1H NMR (400 MHz, benzene-d 6): δ = 5.09–5.15 (m, 1 H). 4.99 (s, 1 H), 4.88 (s, 1 H), 3.01 (q, J = 7.0 Hz, 1 H), 2.12 (m, 4 H), 1.03 (s, 3 H), 1.51 (s, 3 H), 1.15 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 181.14, 147.45, 131.94, 123.67, 111.46, 45.57, 34.64, 26.30, 25.64, 17.66, 16.05. 3a IR (neat): 3100, 2860, 2638, 1711, 1645, 1454, 1414, 1286, 1231, 1092, 901, 833 cm–1. 1H NMR (400 MHz, benzene-d 6): δ = 6.04 (dd, J = 17.6, 10.8 Hz, 1 H), 5.09–5.15 (m, 1 H), 5.02 (d, J = 17.6 Hz, 1 H), 4.98 (d, J = 10.8 Hz, 1 H), 2.00 (q, J = 8.2 Hz, 2 H), 1.76–1.83 (m, 1 H), 1.60–1.67 (m, 1 H), 1.63 (s, 3 H), 1.51 (s, 3 H), 1.23 (s, 3 H). 13C (100 MHz, CDCl3): δ = 182.64, 140.94, 132.09, 123.62, 114.09, 48.33, 38.95, 25.60, 23.26, 20.16, 17.55. MS (EI): m/z (%) = 182.1310 (28) [M+], 167 (4), 137.
  • 14 For the effects of solvents, see the Supporting Information.
  • 15 Shen Z.-L, Peng Z, Yang C.-M, Helberg J, Mayer P, Marek I, Knochel P. Org. Lett. 2014; 16: 956
    • 16a Ely RJ, Morken JP. J. Am. Chem. Soc. 2010; 132: 2534
    • 16b Gao F, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10961
    • 16c Eisch JJ, Sexsmith SR, Fichter KC. J. Organomet. Chem. 1997; 527: 301
    • 16d Eisch JJ, Ma X, Singh M, Wilke G. J. Organomet. Chem. 1990; 382: 273
    • 17a Duong HA, Huleatt PB, Tan Q.-W, Shuying EL. Org. Lett. 2013; 15: 4034
    • 17b Wu J, Hazari N. Chem. Commun. 2011; 47: 1069
    • 17c Johnson MT, Johansson R, Kondrashov MV, Steyl G, Ahlquist MS. G, Roodt A, Wendt OF. Organometallics 2010; 29: 3521
    • 17d Takaya J, Iwasawa N. J. Am. Chem. Soc. 2008; 130: 15254