Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49(02): 120-132
DOI: 10.1055/a-1403-1976
Übersichtsartikel

Der Porcine Respiratory Disease Complex (PRDC) – eine klinische Übersicht

The porcine respiratory disease complex (PRDC) – a clinical review
Matthias Eddicks
1   Klinik für Schweine, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München, Oberschleißheim
,
Lina Eddicks
2   Institut für Tierpathologie, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München, München
,
Julia Stadler
1   Klinik für Schweine, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München, Oberschleißheim
,
Walter Hermanns
2   Institut für Tierpathologie, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München, München
,
Mathias Ritzmann
1   Klinik für Schweine, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München, Oberschleißheim
› Author Affiliations

Zusammenfassung

Der Porcine Respiratory Disease Complex (PRDC) beschreibt eine klinische Kondition, die sich in Form einer häufig therapieresistenten Atemwegsinfektion bei Mastschweinen manifestiert. Die multifaktorielle Ätiologie beinhaltet infektiöse und nicht infektiöse Faktoren. Bei Entstehung und Verlauf des PRDC spielen neben Management und Hygiene v. a. virale und bakterielle Erreger eine bedeutende Rolle. Das Virus des Porzinen Reproduktiven und Respiratorischen Syndroms (PRRSV), das porzine Circovirus Typ 2 (PCV2), Influenza-A-Virus (IAV) und Mycoplasma (M.) hyopneumoniae stellen die relevantesten Erreger dar. Das klinische Bild und die zugrundeliegenden pathomorphologischen Veränderungen können je nach Erregerbeteiligung variieren. Die Komplexität des PRDC erschwert die Diagnose und auch die Prävention auf Bestandsebene. Der Übersichtsartikel gibt einen Einblick in die Pathomorphologie, Pathogenese sowie Inter-Erreger-Interaktionen und zielt darauf ab, praktizierende Tierärztinnen und Tierärzte bei der Diagnose, Befundinterpretation und Prävention des PRDC zu unterstützen.

Abstract

The porcine respiratory disease complex describes a clinical condition that often manifests as treatment-resistant respiratory disease of growing to finishing pigs. Its multifactorial etiology includes infectious and non-infectious factors. Besides management and hygiene conditions, particularly viral and bacterial pathogens contribute to the development and course of PRDC. The porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), influenza A virus (IAV) and Mycoplasma (M.) hyopneunoniae are considered as the major pathogens involved in PRDC. The clinical outcome and necropsy findings may differ depending on the involvement of the different pathogens. The complex nature of the PRDC impedes the diagnostic and preventive measures on affected farms. The present review provides insight into the pathomorphology, pathogenesis and inter-pathogen-interactions and aims to support practitioners in implementing purposeful diagnostic and preventive measures.



Publication History

Received: 16 December 2020

Accepted: 25 February 2021

Article published online:
26 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Opriessnig T, Gimenez-Lirola LG, Halbur PG. Polymicrobial respiratory disease in pigs. Anim Health Res Rev 2011; 12: 133-148 DOI: 10.1017/S1466252311000120.
  • 2 Van Reeth K, Nauwynck H, Pensaert M. Dual infections of feeder pigs with porcine reproductive and respiratory syndrome virus followed by porcine respiratory coronavirus or swine influenza virus: a clinical and virological study. Vet Microbiol 1996; 48: 325-335 DOI: 10.1016/0378-1135(95)00145-x.
  • 3 Harms PA, Halbur PG, Sorden SD. Three cases of porcine respiratory disease complex associated with porcine circovirus type 2 infection. J Swine Health Prod 2002; 10: 27-30
  • 4 Fablet C, Marois C, Dorenlor V. et al. Bacterial pathogens associated with lung lesions in slaughter pigs from 125 herds. Res Vet Sci 2012; 93: 627-630 DOI: 10.1016/j.rvsc.2011.11.002.
  • 5 Fraile L, Alegre A, Lopez-Jimenez R. et al. Risk factors associated with pleuritis and cranio-ventral pulmonary consolidation in slaughter-aged pigs. Vet J 2010; 184: 326-333 DOI: 10.1016/j.tvjl.2009.03.029.
  • 6 Brockmeier SL, Halbur PG, Thacker EL. Porcine Respiratory Disease Complex. In: Brogden KA, Guthmiller JM. eds. Polymicrobial Diseases. Washington: ASM Press; 2002: 231-258 DOI: 10.1128/9781555817947.ch13
  • 7 Maes D, Deluyker H, Verdonck M. et al. Herd factors associated with the seroprevalences of four major respiratory pathogens in slaughter pigs from farrow-to-finish pig herds. Vet Res 2000; 31: 313-327 DOI: 10.1051/vetres:2000122.
  • 8 Thacker EL. Immunology of the porcine respiratory disease complex. Vet Clin North Am Food Anim Pract 2001; 17: 551-565 DOI: 10.1016/s0749-0720(15)30006-2.
  • 9 Kedkovid R, Woonwong Y, Arunorat J. et al. Porcine circovirus type 3 (PCV3) infection in grower pigs from a Thai farm suffering from porcine respiratory disease complex (PRDC). Vet Microbiol 2018; 215: 71-76 DOI: 10.1016/j.vetmic.2018.01.004.
  • 10 Vicca J, Stakenborg T, Maes D. et al. Evaluation of virulence of Mycoplasma hyopneumoniae field isolates. Vet Microbiol 2003; 97: 177-190
  • 11 Nathues H, Grosse Beilage E, Kreienbrock L. et al. RAPD and VNTR analyses demonstrate genotypic heterogeneity of Mycoplasma hyopneumoniae isolates from pigs housed in a region with high pig density. Vet Microbiol 2011; 152: 338-345 DOI: 10.1016/j.vetmic.2011.05.029.
  • 12 Karniychuk UU, Geldhof M, Vanhee M. et al. Pathogenesis and antigenic characterization of a new East European subtype 3 porcine reproductive and respiratory syndrome virus isolate. BMC Vet Res 2010; 6: 30 DOI: 10.1186/1746-6148-6-30.
  • 13 Tian K, Yu X, Zhao T. et al. Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PloS One 2007; 2: e526 DOI: 10.1371/journal.pone.0000526.
  • 14 Sinn LJ, Klingler E, Lamp B. et al. Emergence of a virulent porcine reproductive and respiratory syndrome virus (PRRSV) 1 strain in Lower Austria. Porcine Health Manag 2016; 2: 28 DOI: 10.1186/s40813-016-0044-z.
  • 15 Janke BH. Influenza A virus infections in swine: pathogenesis and diagnosis. Vet Pathol 2014; 51: 410-426 DOI: 10.1177/0300985813513043.
  • 16 Jang Y, Seo T, Seo SH. Higher virulence of swine H1N2 influenza viruses containing avian-origin HA and 2009 pandemic PA and NP in pigs and mice. Arch Virol 2020; 165: 1141-1150 DOI: 10.1007/s00705-020-04572-z.
  • 17 Guo L, Fu Y, Wang Y. et al. A porcine circovirus type 2 (PCV2) mutant with 234 amino acids in capsid protein showed more virulence in vivo, compared with classical PCV2a/b strain. PloS One 2012; 7: e41463 DOI: 10.1371/journal.pone.0041463.
  • 18 Eddicks M, Fux R, Szikora F. et al. Detection of a new cluster of porcine circovirus type 2b strains in domestic pigs in Germany. Vet Microbiol 2015; 176: 337-343 DOI: 10.1016/j.vetmic.2015.01.013.
  • 19 Opriessnig T, Ramamoorthy S, Madson DM. et al. Differences in virulence among porcine circovirus type 2 isolates are unrelated to cluster type 2a or 2b and prior infection provides heterologous protection. J Gen Virol 2008; 89: 2482-2491 DOI: 10.1099/vir.0.2008/001081-0.
  • 20 Rech RR, Gava D, Silva MC. et al. Porcine respiratory disease complex after the introduction of H1N1/2009 influenza virus in Brazil. Zoonoses Public Health 2018; 65: e155-e161 DOI: 10.1111/zph.12424.
  • 21 Schmidt C, Cibulski SP, Andrade CP. et al. Swine influenza virus and association with the porcine respiratory disease complex in pig farms in southern brazil. Zoonoses Public Health 2016; 63: 234-240 DOI: 10.1111/zph.12223.
  • 22 Fablet C, Marois-Crehan C, Simon G. et al. Infectious agents associated with respiratory diseases in 125 farrow-to-finish pig herds: A cross-sectional study. Vet Microbiol 2012; 157: 152-163 DOI: 10.1016/j.vetmic.2011.12.015.
  • 23 Qin S, Ruan W, Yue H. et al. Viral communities associated with porcine respiratory disease complex in intensive commercial farms in Sichuan province, China. Sci Rep 2018; 8: 13341 DOI: 10.1038/s41598-018-31554-8.
  • 24 Kim J, Chung HK, Chae C. Association of porcine circovirus 2 with porcine respiratory disease complex. Vet J 2003; 166: 251-256 DOI: 10.1016/S1090-0233(02)00257-5.
  • 25 Wellenberg GJ, Bouwkamp FT, van der Wolf PJ. et al. A study on the severity and relevance of porcine circovirus type 2 infections in Dutch fattening pigs with respiratory diseases. Vet Microbiol 2010; 142: 217-224 DOI: 10.1016/j.vetmic.2009.10.003.
  • 26 Hansen MS, Pors SE, Jensen HE. et al. An investigation of the pathology and pathogens associated with porcine respiratory disease complex in Denmark. J Comp Pathol 2010; 143: 120-131 DOI: 10.1016/j.jcpa.2010.01.012.
  • 27 Lee JA, Oh YR, Hwang MA. et al. Mycoplasma hyorhinis is a potential pathogen of porcine respiratory disease complex that aggravates pneumonia caused by porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2016; 177: 48-51 DOI: 10.1016/j.vetimm.2016.06.008.
  • 28 Chen D, Wei Y, Huang L. et al. Synergistic pathogenicity in sequential coinfection with Mycoplasma hyorhinis and porcine circovirus type 2. Vet Microbiol 2016; 182: 123-130 DOI: 10.1016/j.vetmic.2015.11.003.
  • 29 Rammohan L, Xue L, Wang C. et al. Increased prevalence of torque teno viruses in porcine respiratory disease complex affected pigs. Vet Microbiol 2012; 157: 61-68 DOI: 10.1016/j.vetmic.2011.12.013.
  • 30 Wei H, Lenz SD, Van Alstine WG. et al. Infection of cesarean-derived colostrum-deprived pigs with porcine circovirus type 2 and Swine influenza virus. Comp Med 2010; 60: 45-50
  • 31 Deblanc C, Gorin S, Queguiner S. et al. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype. Vet Microbiol 2012; 157: 96-105 DOI: 10.1016/j.vetmic.2011.12.027.
  • 32 Shibata I, Yazawa S, Ono M. et al. Experimental dual infection of specific pathogen-free pigs with porcine reproductive and respiratory syndrome virus and pseudorabies virus. J Vet Med B Infect Dis Vet Public Health 2003; 50: 14-19 DOI: 10.1046/j.1439-0450.2003.00605.x.
  • 33 Thanawongnuwech R, Brown GB, Halbur PG. et al. Pathogenesis of porcine reproductive and respiratory syndrome virus-induced increase in susceptibility to Streptococcus suis infection. Vet Pathol 2000; 37: 143-152 DOI: 10.1354/vp.37-2-143.
  • 34 Rovira A, Balasch M, Segales J. et al. Experimental inoculation of conventional pigs with porcine reproductive and respiratory syndrome virus and porcine circovirus 2. J Virol 2002; 76: 3232-3239
  • 35 Segales J, Domingo M, Chianini F. et al. Immunosuppression in postweaning multisystemic wasting syndrome affected pigs. Vet Microbiol 2004; 98: 151-158
  • 36 Wang Y, Gagnon CA, Savard C. et al. Capsular sialic acid of Streptococcus suis serotype 2 binds to swine influenza virus and enhances bacterial interactions with virus-infected tracheal epithelial cells. Infect Immun 2013; 81: 4498-4508 DOI: 10.1128/IAI.00818-13.
  • 37 Meng F, Wu NH, Nerlich A. et al. Dynamic virus-bacterium interactions in a porcine precision-cut lung slice coinfection model: swine influenza virus paves the way for streptococcus suis infection in a two-step process. Infect Immun 2015; 83: 2806-2815 DOI: 10.1128/IAI.00171-15.
  • 38 Deblanc C, Delgado-Ortega M, Gorin S. et al. Mycoplasma hyopneumoniae does not affect the interferon-related anti-viral response but predisposes the pig to a higher level of inflammation following swine influenza virus infection. J Gen Virol 2016; 97: 2501-2515 DOI: 10.1099/jgv.0.000573.
  • 39 Zhang H, Lunney JK, Baker RB. et al. Cytokine and chemokine mRNA expression profiles in tracheobronchial lymph nodes from pigs singularly infected or coinfected with porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (MHYO). Vet Immunol Immunopathol 2011; 140: 152-158 DOI: 10.1016/j.vetimm.2010.11.019.
  • 40 Lin X, Huang C, Shi J. et al. Investigation of pathogenesis of H1N1 influenza virus and swine streptococcus suis serotype 2 co-infection in pigs by microarray analysis. PloS One 2015; 10: e0124086 DOI: 10.1371/journal.pone.0124086.
  • 41 Dang Y, Lachance C, Wang Y. et al. Transcriptional approach to study porcine tracheal epithelial cells individually or dually infected with swine influenza virus and Streptococcus suis. BMC Vet Res 2014; 10: 86 DOI: 10.1186/1746-6148-10-86.
  • 42 Van Reeth K, Nauwynck H, Pensaert M. Clinical effects of experimental dual infections with porcine reproductive and respiratory syndrome virus followed by swine influenza virus in conventional and colostrum-deprived pigs. J Vet Med B Infect Dis Vet Public Health 2001; 48: 283-292 DOI: 10.1046/j.1439-0450.2001.00438.x.
  • 43 Saade G, Deblanc C, Bougon J. et al. Coinfections and their molecular consequences in the porcine respiratory tract. Vet Res 2020; 51: 80 DOI: 10.1186/s13567-020-00807-8.
  • 44 Cheong Y, Oh C, Lee K. et al. Survey of porcine respiratory disease complex-associated pathogens among commercial pig farms in Korea via oral fluid method. J Vet Sci 2017; 18: 283-289 DOI: 10.4142/jvs.2017.18.3.283.
  • 45 Ramirez A, Wang C, Prickett JR. et al. Efficient surveillance of pig populations using oral fluids. Prev Vet Med 2012; 104: 292-300 DOI: 10.1016/j.prevetmed.2011.11.008.
  • 46 Hernandez-Garcia J, Robben N, Magnee D. et al. The use of oral fluids to monitor key pathogens in porcine respiratory disease complex. Porcine Health Manag 2017; 3: 7 DOI: 10.1186/s40813-017-0055-4.
  • 47 Kittawornrat A, Prickett J, Chittick W. et al. Porcine reproductive and respiratory syndrome virus (PRRSV) in serum and oral fluid samples from individual boars: will oral fluid replace serum for PRRSV surveillance?. Virus Res 2010; 154: 170-176 DOI: 10.1016/j.virusres.2010.07.025.
  • 48 Biernacka K, Karbowiak P, Wrobel P. et al. Detection of porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV) in oral fluid of pigs. Res Vet Sci 2016; 109: 74-80 DOI: 10.1016/j.rvsc.2016.09.014.
  • 49 Sponheim A, Alvarez J, Fano E. et al. Comparison of the sensitivity of laryngeal swabs and deep tracheal catheters for detection of Mycoplasma hyopneumoniae in experimentally and naturally infected pigs early and late after infection. Vet Microbiol 2020; 241: 108500 DOI: 10.1016/j.vetmic.2019.108500.
  • 50 Thacker EL. Diagnosis of Mycoplasma hyopneumoniae. Anim Health Res Rev 2004; 5: 317-320 DOI: 10.1079/ahr200491.
  • 51 Olvera A, Sibila M, Calsamiglia M. et al. Comparison of porcine circovirus type 2 load in serum quantified by a real time PCR in postweaning multisystemic wasting syndrome and porcine dermatitis and nephropathy syndrome naturally affected pigs. J Virol Methods 2004; 117: 75-80 DOI: 10.1016/j.jviromet.2003.12.007.
  • 52 Brunborg IM, Moldal T, Jonassen CM. Quantitation of porcine circovirus type 2 isolated from serum/plasma and tissue samples of healthy pigs and pigs with postweaning multisystemic wasting syndrome using a TaqMan-based real-time PCR. J Virol Methods 2004; 122: 171-178 DOI: 10.1016/j.jviromet.2004.08.014.
  • 53 Tico G, Segales J, Martinez J. The blurred border between porcine circovirus type 2-systemic disease and porcine respiratory disease complex. Vet Microbiol 2013; 163: 242-247 DOI: 10.1016/j.vetmic.2013.01.001.
  • 54 Segales J. Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. Virus Res 2012; 164: 10-19 DOI: 10.1016/j.virusres.2011.10.007.
  • 55 Rosell C, Segales J, Plana-Duran J. et al. Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol 1999; 120: 59-78
  • 56 Sur JH, Cooper VL, Galeota JA. et al. In vivo detection of porcine reproductive and respiratory syndrome virus RNA by in situ hybridization at different times postinfection. J Clin Microbiol 1996; 34: 2280-2286 DOI: 10.1128/JCM.34.9.2280-2286.1996.
  • 57 Jung T, Choi C, Chae C. Localization of swine influenza virus in naturally infected pigs. Vet Pathol 2002; 39: 10-16 DOI: 10.1354/vp.39-1-10.
  • 58 Vincent LL, Janke BH, Paul PS. et al. A monoclonal-antibody-based immunohistochemical method for the detection of swine influenza virus in formalin-fixed, paraffin-embedded tissues. J Vet Diagn Invest 1997; 9: 191-195 DOI: 10.1177/104063879700900214.
  • 59 Kwon D, Chae C. Detection and localization of Mycoplasma hyopneumoniae DNA in lungs from naturally infected pigs by in situ hybridization using a digoxigenin-labeled probe. Vet Pathol 1999; 36: 308-313 DOI: 10.1354/Vp.36–4-308.
  • 60 Opriessnig T, Thacker EL, Yu S. et al. Experimental reproduction of postweaning multisystemic wasting syndrome in pigs by dual infection with Mycoplasma hyopneumoniae and porcine circovirus type 2. Vet Pathol 2004; 41: 624-640 DOI: 10.1354/vp.41-6-624.
  • 61 Ostanello F, Dottori M, Gusmara C. et al. Pneumonia disease assessment using a slaughterhouse lung-scoring method. J Vet Med A Physiol Pathol Clin Med 2007; 54: 70-75 DOI: 10.1111/j.1439-0442.2007.00920.x.
  • 62 Jubb KVF, Kennedy PC, Palmer N. Respiratory System. In: Grant Maxie M. ed. Pathology of Domestic Animals. 6th ed.. St. Louis, Missouri: Elsevier; 2016: 500-535
  • 63 Dibarbora M, Cappuccio J, Olivera V. et al. Swine influenza: clinical, serological, pathological, and virological cross-sectional studies in nine farms in Argentina. Influenza Other Respir Viruses 2013; 7 (Suppl. 04) 10-15 DOI: 10.1111/irv.12200.
  • 64 Otake S, Dee S, Corzo C. et al. Long-distance airborne transport of infectious PRRSV and Mycoplasma hyopneumoniae from a swine population infected with multiple viral variants. Vet Microbiol 2010; 145: 198-208 DOI: 10.1016/j.vetmic.2010.03.028.
  • 65 Corzo CA, Culhane M, Dee S. et al. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns. PloS One 2013; 8: e71444 DOI: 10.1371/journal.pone.0071444.
  • 66 Poljak Z, Dewey CE, Martin SW. et al. Prevalence of and risk factors for influenza in southern Ontario swine herds in 2001 and 2003. Can J Vet Res 2008; 72: 7-17
  • 67 Woeste K, Grosse Beilage E. [Transmission of agents of the porcine respiratory disease complex (PRDC) between swine herds: a review. Part 1 – diagnosis, transmission by animal contact]. Dtsch Tierarztl Wochenschr 2007; 114: 324-326 328–337
  • 68 Woeste K, Grosse Beilage E. [Transmission of agents of the porcine respiratory disease complex (PRDC) between swine herds: a review. Part 2 – Pathogen transmission via semen, air and living/nonliving vectors]. Dtsch Tierarztl Wochenschr 2007; 114: 364-366 368–373
  • 69 Christopher-Hennings J, Nelson EA, Hines RJ. et al. Persistence of porcine reproductive and respiratory syndrome virus in serum and semen of adult boars. J Vet Diagn Invest 1995; 7: 456-464 DOI: 10.1177/104063879500700406.
  • 70 Christopher-Hennings J, Holler LD, Benfield DA. et al. Detection and duration of porcine reproductive and respiratory syndrome virus in semen, serum, peripheral blood mononuclear cells, and tissues from Yorkshire, Hampshire, and Landrace boars. J Vet Diagn Invest 2001; 13: 133-142 DOI: 10.1177/104063870101300207.
  • 71 Mateusen B, Sanchez RE, Van Soom A. et al. Susceptibility of pig embryos to porcine circovirus type 2 infection. Theriogenology 2004; 61: 91-101
  • 72 Zhao H, Zhao G, Wang W. Susceptibility of porcine preimplantation embryos to viruses associated with reproductive failure. Theriogenology 2016; 86: 1631-1636 DOI: 10.1016/j.theriogenology.2016.06.004.
  • 73 Madson DM, Patterson AR, Ramamoorthy S. et al. Reproductive failure experimentally induced in sows via artificial insemination with semen spiked with porcine circovirus type 2. Vet Pathol 2009; 46: 707-716 DOI: 10.1354/vp.08-VP-0234-O-FL.
  • 74 Gerlach M, Bernemann U, v. Berg S. et al. Porcine reproductive respiratory syndrome (PRRS) – case report of an eradication. Prakt Tierarzt 2017; 98: 944-951
  • 75 Dee SA. Elimination of porcine reproductive and respiratory syndrome virus from 30 farms by test and removal. J Swine Health Prod 2004; 12: 129-133
  • 76 Dee SA, Bierk MD, Deen J. et al. An evaluation of test and removal for the elimination of porcine reproductive and respiratory syndrome virus from 5 swine farms. Can J Vet Res 2001; 65: 22-27
  • 77 Holst S, Yeske P, Pieters M. Elimination of Mycoplasma hyopneumoniae from breed-to-wean farms: A review of current protocols with emphasis on herd closure and medication. J Swine Health Prod 2015; 23: 321-330
  • 78 Feng H, Blanco G, Segales J. et al. Can Porcine circovirus type 2 (PCV2) infection be eradicated by mass vaccination?. Vet Microbiol 2014; 172: 92-99 DOI: 10.1016/j.vetmic.2014.05.003.
  • 79 Torremorell M, Juarez A, Chavez E. et al. Procedures to eliminate H3N2 swine influenza virus from a pig herd. Vet Rec 2009; 165: 74-77 DOI: 10.1136/vetrec.165.3.74.
  • 80 Maes D, Sibila M, Kuhnert P. et al. Update on Mycoplasma hyopneumoniae infections in pigs: Knowledge gaps for improved disease control. Transbound Emerg Dis 2018; 65 (Suppl. 01) 110-124 DOI: 10.1111/tbed.12677.
  • 81 Nathues H, Chang YM, Wieland B. et al. Herd-level risk factors for the seropositivity to Mycoplasma hyopneumoniae and the occurrence of enzootic pneumonia among fattening pigs in areas of endemic infection and high pig density. Transbound Emerg Dis 2014; 61: 316-328 DOI: 10.1111/tbed.12033.
  • 82 Chae C. Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae. Vet J 2016; 212: 1-6 DOI: 10.1016/j.tvjl.2015.10.030.
  • 83 Kixmoeller M, Ritzmann M, Eddicks M. et al. Reduction of PMWS-associated clinical signs and co-infections by vaccination against PCV2. Vaccine 2008; 26: 3443-3451 DOI: 10.1016/j.vaccine.2008.04.032.
  • 84 Stadler J, Zoels S, Eddicks M. et al. Assessment of safety and reproductive performance after vaccination with a modified live-virus PRRS genotype 1 vaccine in pregnant sows at various stages of gestation. Vaccine 2016; 34: 3862-3866 DOI: 10.1016/j.vaccine.2016.05.042.
  • 85 Wilson S, Van Brussel L, Saunders G. et al. Vaccination of piglets at 1 week of age with an inactivated Mycoplasma hyopneumoniae vaccine reduces lung lesions and improves average daily gain in body weight. Vaccine 2012; 30: 7625-7629 DOI: 10.1016/j.vaccine.2012.10.028.
  • 86 Martelli P, Gozio S, Ferrari L. et al. Efficacy of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in pigs naturally exposed to a heterologous European (Italian cluster) field strain: Clinical protection and cell-mediated immunity. Vaccine 2009; 27: 3788-3799 DOI: 10.1016/j.vaccine.2009.03.028.
  • 87 Van Reeth K, Ma W. Swine influenza virus vaccines: to change or not to change – that‘s the question. Curr Top Microbiol Immunol 2013; 370: 173-200 DOI: 10.1007/82_2012_266.
  • 88 Fachinger V, Bischoff R, Jedidia SB. et al. The effect of vaccination against porcine circovirus type 2 in pigs suffering from porcine respiratory disease complex. Vaccine 2008; 26: 1488-1499 DOI: 10.1016/j.vaccine.2007.11.053.
  • 89 Pagot E, Rigaut M, Roudaut D. et al. Field efficacy of Porcilis® PCV M Hyo versus a licensed commercially available vaccine and placebo in the prevention of PRDC in pigs on a French farm: a randomized controlled trial. Porcine Health Manag 2017; 3: 3 DOI: 10.1186/s40813-016-0051-0.
  • 90 Merialdi G, Dottori M, Bonilauri P. et al. Survey of pleuritis and pulmonary lesions in pigs at abattoir with a focus on the extent of the condition and herd risk factors. Vet J 2012; 193: 234-239 DOI: 10.1016/j.tvjl.2011.11.009.
  • 91 Opriessnig T, McKeown NE, Harmon KL. et al. Porcine circovirus type 2 infection decreases the efficacy of a modified live porcine reproductive and respiratory syndrome virus vaccine. Clin Vaccine Immunol 2006; 13: 923-929 DOI: 10.1128/CVI.00074-06.
  • 92 Seo HW, Park SJ, Park C. et al. Interaction of porcine circovirus type 2 and Mycoplasma hyopneumoniae vaccines on dually infected pigs. Vaccine 2014; 32: 2480-2486 DOI: 10.1016/j.vaccine.2014.02.088.
  • 93 Thacker EL, Halbur PG, Ross RF. et al. Mycoplasma hyopneumoniae potentiation of porcine reproductive and respiratory syndrome virus-induced pneumonia. J Clin Microbiol 1999; 37: 620-627 DOI: 10.1128/JCM.37.3.620-627.1999.
  • 94 Thacker EL, Thacker BJ, Young TF. et al. Effect of vaccination on the potentiation of porcine reproductive and respiratory syndrome virus (PRRSV)-induced pneumonia by Mycoplasma hyopneumoniae. Vaccine 2000; 18: 1244-1252 DOI: 10.1016/s0264-410x(99)00395-3.
  • 95 Park SJ, Seo HW, Park C. et al. Interaction between single-dose Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus vaccines on dually infected pigs. Res Vet Sci 2014; 96: 516-522 DOI: 10.1016/j.rvsc.2014.03.009.
  • 96 Moreau IA, Miller GY, Bahnson PB. Effects of Mycoplasma hyopneumoniae vaccine on pigs naturally infected with M. hyopneumoniae and porcine reproductive and respiratory syndrome virus. Vaccine 2004; 22: 2328-2333 DOI: 10.1016/j.vaccine.2003.10.041.
  • 97 Meiners C, Loesken S, Doehring S. et al. Field study on swine influenza virus (SIV) infection in weaner pigs and sows. Tierarztl Prax Ausg G Grosstiere Nutztiere 2014; 42: 351-359 DOI: 10.15653/TPG-131130.
  • 98 Kitikoon P, Vincent AL, Jones KR. et al. Vaccine efficacy and immune response to swine influenza virus challenge in pigs infected with porcine reproductive and respiratory syndrome virus at the time of SIV vaccination. Vet Microbiol 2009; 139: 235-244 DOI: 10.1016/j.vetmic.2009.06.003.
  • 99 Salmon H, Berri M, Gerdts V. et al. Humoral and cellular factors of maternal immunity in swine. Dev Comp Immunol 2009; 33: 384-393 DOI: 10.1016/j.dci.2008.07.007.
  • 100 Haake M, Palzer A, Rist B. et al. Influence of age on the effectiveness of PCV2 vaccination in piglets with high levels of maternally derived antibodies. Vet Microbiol 2014; 168: 272-280 DOI: 10.1016/j.vetmic.2013.11.012.
  • 101 Martelli P, Saleri R, Ferrarini G. et al. Impact of maternally derived immunity on piglets‘ immune response and protection against porcine circovirus type 2 (PCV2) after vaccination against PCV2 at different age. BMC Vet Res 2016; 12: 77 DOI: 10.1186/s12917-016-0700-1.
  • 102 Nickoll I, Striegl J, Fux R. et al. Porzines Circovirus Typ 2 (PCV2)-Infektionen in oberbayerischen Schweinemastbeständen mit routinemäßiger Impfung gegen PCV2 – Bedeutung für das Auftreten von Lungenveränderungen bei Schlachttierkörpern. Tieraerztl Umsch 2016; 71: 360-370
  • 103 Vilalta C, Alcalá T, López-Jimenez R. Clinical efficacy of acetylsalicylic acid as an adjunct to antibacterial treatment of porcine respiratory disease complex. J Swine Health Prod 2012; 20: 10-16
  • 104 Salichs M, Sabate D, Homedes J. Efficacy of ketoprofen administered in drinking water at a low dose for the treatment of porcine respiratory disease complex. J Anim Sci 2013; 91: 4469-4475 DOI: 10.2527/jas.2012-6165.
  • 105 Georgoulakis IE, Petridou E, Filiousis G. Meloxicam as adjunctive therapy in treatment and control of porcine respiratory disease complex in growing pigs. J Swine Health Prod 2006; 14: 253-257