Synlett 2021; 32(14): 1447-1452
DOI: 10.1055/a-1535-8891
letter

Decarboxylative, Diastereoselective and exo-Selective 1,3-Dipolar Cycloaddition for Diversity-Oriented Construction of Structural Spiro[Butyrolactone–Pyrrolidine–Chromanone] Hybrids

Dong-Gui Guo
a   College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550025, P. R. of China
,
Zheng Li
b   National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. of China
,
Xiao-Xue Han
b   National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. of China
,
Lei Zhang
b   National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. of China
,
Min Zhang
b   National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. of China
,
Xiong-Li Liu
b   National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. of China
› Author Affiliations
We are grateful for the financial support from the NSFC (81760625 and 22061006) and Science and Technology Program of Guizhou Province ([2020]4Y205, [2020]1Z074, [2018]5781, and [2017]7295).


Abstract

Inspired by the chemistry and biology of butyrolactones, pyrrolidines, and chromanones, we successfully developed a simple domino 1,3-dipolar cycloaddition of homoserine-lactone-derived azomethine ylides for the construction of biologically important spiro[butyrolactone–pyrrolidine–chromanone] hybrids in the presence of Et3N as a catalyst under mild conditions. The reaction is based on the application of carboxylic-acid-activated chromones as dienophiles, followed by a decarboxylation process. This reaction displayed good substrate tolerance and gave the desired products in moderate to good yields with high diastereoselectivities (up to 85% yield and >20:1 diastereomeric ratio) via an exo-transition state. This is the first example of an introduction of a chromanone moiety into a spiro[butyrolactone-pyrrolidine] framework, which might be valuable in medicinal chemistry.

Supporting Information



Publication History

Received: 24 April 2021

Accepted after revision: 24 June 2021

Accepted Manuscript online:
24 June 2021

Article published online:
15 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Nicolaou KC, Vourloumis D, Winssinger N, Baran PS. Angew. Chem. Int. Ed. 2000; 39: 44
    • 1b Wetzel S, Bon RS, Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 10800
    • 1c Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
    • 1d Cao Z.-Y, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
    • 1e Miao H.-J, Wang L.-L, Han H.-B, Zhao Y.-D, Wang Q.-L, Bu Z.-W. Chem. Sci. 2020; 11: 1418
    • 1f Han B, He X.-H, Liu Y.-Q, He G, Peng C, Li J.-L. Chem. Soc. Rev. 2021; 50: 1522
    • 1g Bai X.-G, Miao H.-J, Zhao Y, Wang Q.-L, Bu Z.-W. Org. Lett. 2020; 22: 5068
    • 3a Kesava-Reddy N, Golz C, Strohmann C, Kumar K. Chem. Eur. J. 2016; 22: 18373
    • 3b Raksat A, Maneerat W, Rujanapun N, Andersen RJ, Pyne SG, Laphookhieo S. J. Nat. Prod. 2019; 82: 2343
    • 3c Do TM. L, Truong AV, Pinnock TG, Pratt LM, Yamamoto S, Watarai H, Nguyen KP. P. Chem. Pharm. Bull. 2013; 61: 624
    • 3d Li W, Li S, Higai K, Sasaki T, Asada Y, Ohshima S, Koike K. Bioorg. Med. Chem. Lett. 2013; 23: 5836
    • 3e Li W, Asada Y, Yoshikawa T. Phytochemistry 2000; 55: 447
    • 3f Zhao C, Shah BH, Li H, Wu X, Zhang YJ. Asian J. Org. Chem. 2021; 10: 545
    • 4a Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 4b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 4c Kang T.-H, Matsumoto K, Murakami Y, Takayama H, Kitajima M, Aimi N, Watanabe H. Eur. J. Pharmacol. 2002; 444: 39
    • 4d Lee KK, Zhou BN, Kingston DG. I, Vaisberg AJ, Hammond GB. Planta Med. 1999; 65: 759
    • 4e Raj AA, Raghunathan R, SrideviKumari MR, Raman N. Bioorg. Med. Chem. 2003; 11: 407
    • 4f Li Q.-H, Liu T.-L, Wei L, Zhou X, Tao H.-Y, Wang C.-J. Chem. Commun. 2013; 49: 9642
    • 4g Teng H.-L, Huang H, Wang C.-J. Chem. Eur. J. 2012; 18: 12614
    • 4h Wu Y, Liu H, Zhang L, Sun Z, Xiao Y, Huang J, Wang M, Guo H. RSC Adv. 2016; 6: 73547
    • 4i Zhong Y, Hong S, Cai Z, Ma S, Jiang X. RSC Adv. 2018; 8: 28874
    • 5a Sun M.-r, Lu H.-t, Wang Y.-z, Yang H, Liu H.-m. J. Org. Chem. 2009; 74: 2213
    • 5b Becker MH, Chua P, Downham R, Douglas CJ, Garg NK, Hiebert S, Jaroch S, Matsuoka RT, Middleton JA, Ng FW, Overman LE. J. Am. Chem. Soc. 2007; 129: 11987 ; corrigendum: J. Am. Chem. Soc. 2018, 140, 5319
  • 6 Hazra A, Bharitkar YP, Chakraborty D, Mondal SK, Singal N, Mondal S, Maity A, Paira R, Banerjee S, Mondal NB. ACS Comb. Sci. 2013; 15: 41
    • 7a Longmire JM, Wang B, Zhang X. J. Am. Chem. Soc. 2002; 124: 13400
    • 7b Gothelf AS, Gothelf KV, Hazell RG, Jørgensen KA. Angew. Chem. Int. Ed. 2002; 41: 4236
    • 7c Pellissier H. Tetrahedron 2012; 68: 2197
    • 7d Adrio J, Carretero JC. Chem. Commun. 2011; 47: 6784
    • 7e Stanley LM, Sibi MP. Chem. Rev. 2008; 108: 2887
    • 8a Grigg R, Kilner C, Sarker MA. B, Orgaz de la Cierva C, Dondas HA. Tetrahedron 2008; 64: 8974
    • 8b Grigg R, Sarker MA. B. Tetrahedron 2006; 62: 10332
    • 8c Wang L, Shi XM, Dong WP, Zhua LP, Wang R. Chem. Commun. 2013; 49: 3458
    • 8d Tang L.-W, Li C, Zhao B.-J, Lan L, Zhang M, Zhou Z.-M. Tetrahedron 2017; 73: 923
    • 8e Liu T.-L, He Z.-L, Tao H.-Y, Wang C.-J. Chem. Eur. J. 2012; 18: 8042
    • 8f Liu H.-C, Tao H.-Y, Cong H, Wang C.-J. J. Org. Chem. 2016; 81: 3752
    • 8g Liu K, Xiong Y, Wang Z.-F, Tao H.-Y, Wang C.-J. Chem. Commun. 2016; 52: 9458
    • 8h Cayuelas A, Ortiz R, Nájera C, Sansano JM, Larrañaga O, de Cózar A, Cossío FP. Org. Lett. 2016; 18: 2926
    • 8i Kowalczyk-Dworak D, Albrecht Ł. Org. Biomol. Chem. 2019; 17: 2624
    • 8j Chen N, Zhu L, Gan L, Liu Z, Wang R, Cai X, Jiang X. Eur. J. Org. Chem. 2018; 2939
    • 8k Fang X, Dong X.-Q, Wang C.-J. Tetrahedron Lett. 2014; 55: 5660
    • 8l García-Mingüens E, Caletková O, Berkeš D, Nájera C, Sansano JM. Eur. J. Org. Chem. 2020; 5563
    • 9a Viegas-Junior C, Danuello A, Bolzani VD. S, Barreiro EJ, Fraga CA. M. Curr. Med. Chem. 2007; 14: 1829
    • 9b Li JW.-H, Vederas JC. Science 2009; 325: 161
    • 9c Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2009; 48: 3224
    • 9d Koch MA, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, Odermatt A, Ertl P, Waldmann H. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 17272
    • 9e Jin S, Wang L, Han H, Liu X, Bu Z, Wang Q. Chem. Commun. 2021; 57: 359
    • 9f Zhang K, Han H, Wang L, Zhang Z, Wang Q, Bu Z. Chem. Commun. 2019; 55: 13681
    • 9g Sheng F.-T, Wang J.-Y, Tan W, Zhang Y.-C, Shi F. Org. Chem. Front. 2020; 7: 3967
    • 10a Liu X.-L, Zhou G, Gong Y, Yao Z, Zuo X, Zhang W.-H, Zhou Y. Org. Lett. 2019; 21: 2528
    • 10b Liu X.-L, Gong Y, Chen S, Zuo X, Yao Z, Zhou Y. Org. Chem. Front. 2019; 6: 1603
    • 10c Liu X.-L, Zuo X, Wang J.-X, Chang S.-q, Wei Q.-D, Zhou Y. Org. Chem. Front. 2019; 6: 1485
    • 10d Zuo X, Liu X.-L, Wang J.-X, Yao Y.-M, Zhou Y.-Y, Wei Q.-D, Gong Y, Zhou Y. J. Org. Chem. 2019; 84: 6679
    • 10e Liu X.-L, Wei Q.-D, Zuo X, Xu S.-W, Yao Z, Wang J.-X, Zhou Y. Adv. Synth. Catal. 2019; 361: 2836
    • 10f Zhang M, Gong Y, Zhou W, Zhou Y, Liu X.-L. Org. Chem. Front. 2021; DOI: 10.1039/D1QO00269D.
    • 11a Amantini D, Fringuelli F, Piermatti O, Pizzo F, Vaccaro L. J. Org. Chem. 2003; 68: 9263
    • 11b Girotti R, Marrocchi A, Minuti L, Piermatti O, Pizzo F, Vaccaro L. J. Org. Chem. 2006; 71: 70
    • 11c Jung ME, Allen DA. Org. Lett. 2009; 11: 757
    • 11d Ballerini E, Minuti L, Piermatti O, Pizzo F. J. Org. Chem. 2009; 74: 4311
    • 11e Albrecht A, Bojanowski J, Kot A, Sieroń L. Org. Biomol. Chem. 2019; 17: 4238
    • 11f Zuo X, Chen S, Xu S.-W, Chang S.-Q, Liu X.-L, Zhou Y, Yuan W.-C. Synthesis 2019; 51: 2339
    • 11g Che C, Li S, Jiang X, Quan J, Lin S, Yang Z. Org. Lett. 2010; 12: 4682
    • 11h Yue J, Chen S, Zuo X, Liu X.-L, Xu S.-W, Zhou Y. Tetrahedron Lett. 2019; 60: 137
    • 11i Liu X.-W, Yue J, Li Z, Wu D, Tian M.-Y, Wang Q.-L, Zhou Y. Tetrahedron 2020; 76: 131678
    • 11j Liu X.-W, Chang S.-Q, Wang Q.-L, Chen S, Wang J.-X, Zhou W, Zhou Y. Synthesis 2020; 52: 3018
    • 11k Zhou F, Zhu L, Pan B.-W, Shi Y, Liu Y.-L, Zhou J. Chem. Sci. 2020; 11: 9341
  • 12 7-Methyl-1-phenyl-1,4′,5′,9a-tetrahydro-3aH-spiro[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione (3b); Typical Procedure Compound 1a (0.30 mmol) and compound 2b (0.20 mmol) were dissolved in CH2Cl2 (1.5 mL). Et3N (1.3 equiv, 0.26 mmol) was added to this solution at rt, and the mixture was stirred for 48 h. After the removal of the solvent, purification by flash column chromatography [silica gel, hexane–EtOAc (5:1)] gave a light-yellow solid; yield: 49.6 mg (71%; 16:1 dr); mp 216.3–216.9 °C. 1H NMR (400 MHz, CDCl3): δ = 2.23 (s, 3 H), 2.29–2.34 (m, 1 H), 2.44–2.52 (m, 1 H), 2.99–3.02 (m, 1 H), 4.26–4.33 (m, 1 H), 4.36–4.41 (m, 1 H), 4.91–4.96 (m, 2 H), 6.82 (d, J = 8.8 Hz, 1 H), 7.19–7.32 (m, 6 H), 7.57 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 19.4, 36.0, 55.0, 62.5, 63.9, 68.7, 83.5, 116.9, 117.8, 125.4, 125.8, 126.9, 127.5, 130.8, 136.7, 140.1, 155.9, 174.5, 188.3. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C21H19NNaO4: 372.1206; found: 372.1207.
  • 13 CCDC 2074189 and 2074188 contain the supplementary crystallographic data for compounds 3b and 3t, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
    • 14a Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
    • 14b Kim H.-Y, Li J.-Y, Kim S, Oh K. J. Am. Chem. Soc. 2011; 133: 20750 ; corrigendum: J. Am. Chem. Soc. 2012, 134, 16918
    • 14c Arai T, Yokoyama N, Mishiro A, Sato H. Angew. Chem. 2010; 122: 8067 ; Angew. Chem. Int. Ed. 2010, 49, 7895
  • 15 Zhang Y, Chen S, Wei C, Pankin GO, Ye X, Chen YC. Eur. J. Med. Chem. 2018; 147: 218