Tierarztl Prax Ausg K Kleintiere Heimtiere 2021; 49(05): 359-362
DOI: 10.1055/a-1580-8408
Original Article

Examination of common swifts (Apus apus) for salmonella shedding in the area of Hannover, Lower Saxony, Germany

Untersuchung von Mauerseglern (Apus apus) auf die Ausscheidung von Salmonellen in der Region Hannover, Niedersachsen, Deutschland
Warakorn Tiyawattanaroj
1   Clinic for Small Mammals, Reptiles and Birds, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Arne Jung
2   Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Lydia Mohr
2   Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Marko Legler
1   Clinic for Small Mammals, Reptiles and Birds, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
› Author Affiliations

Abstract

Objective The available literature indicates a high prevalence of the zoonotic pathogen Salmonella (S.) enterica serovar Infantis in the common swift (Apus apus). This long-distance migrant, which only consumes aerial plankton, can reach high population densities in places with suitable breeding sites. Dedicated competent private persons take part in the hand rearing of juvenile common swifts in wildlife rescue centres, which unavoidably results in close contact with these avian patients. For this reason, we examined common swifts for shedding of Salmonella spp.

Material and methods In the years 2014 and 2019, intestinal swabs or fresh faeces of common swifts (2014: n = 54; 2019: n = 62) were examined microbiologically (DIN EN ISO 6579; Annex D) in the area of Hannover, Lower Saxony, Germany.

Results Salmonella spp. could not be detected in any of the examined common swifts within the investigation period and the studied area in 2014 and 2019.

Conclusion and clinical relevance The results illustrate that the common swift is unlikely to be a natural reservoir of Salmonella spp. For the transmission of salmonella by swifts the local conditions with the corresponding environmental impact seem to play a significant role, and the risk of transmission should be assessed according to the region to be examined.

Zusammenfassung

Gegenstand und Ziel In der verfügbaren Literatur finden sich Angaben zu Infektionen mit Salmonella (S.) enterica serovar Infantis bei Mauerseglern (Apus apus) mit hoher Prävalenz. Der Mauersegler ernährt sich von Luftplankton, überwintert als Langstreckenzieher in Zentralafrika und kann in Abhängigkeit von den vorhandenen Brutmöglichkeiten hohe Bestandsdichten erreichen. Engagierte fachkundige Privatpersonen übernehmen die Pflege und Handaufzucht von verunfallten juvenilen Mauerseglern. Dies führt unweigerlich zu einem engen Kontakt zu diesen Vögeln. Mit diesem Hintergrund sollte bei Mauerseglern die Ausscheidung von Salmonella spp. untersucht werden.

Material und Methoden In den Jahren 2014 und 2019 wurden Darmabstriche oder frische Kotproben von Mauerseglern (2014: n = 54; 2019: n = 62) aus dem Raum Hannover, Niedersachsen, Deutschland, mikrobiologisch (DIN EN ISO 6579; Anhang D) auf das Vorkommen von Salmonella spp. untersucht.

Ergebnisse In beiden Untersuchungszeiträumen konnten bei keinem der untersuchten Mauersegler Salmonella spp. nachgewiesen werden.

Schlussfolgerung und klinische Relevanz Der Mauersegler stellt mit hoher Wahrscheinlichkeit kein natürliches Reservoir für Salmonellen dar. Bei der Übertragung von Salmonellen durch Mauersegler scheinen die lokalen Gegebenheiten mit der entsprechenden Kontamination der Umwelt eine wichtige Rolle zu spielen und sollten in eine Risikobeurteilung einbezogen werden.



Publication History

Received: 03 September 2020

Accepted: 20 January 2021

Article published online:
20 October 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Åkesson S, Klaassen R, Holmgren J. et al. Migration routes and strategies in a highly aerial migrant, the Common Swift Apus apus, revealed by light-level Geolocators. PLoS One 2012; 7: 1-9 DOI: 10.1371/journal.pone.0041195.
  • 2 Weitnauer E, Scherner ER. Familie Apodidae – Segler. In: Glutz von Blotzheim UN, Bauer KM. Hrsg. Handbuch der Vögel Mitteleuropas (Band 9). Wiesbaden: Akademische Verlagsgesellschaft Wiesbaden; 1980: 669-712
  • 3 Hedenström A, Norevik G, Warfvinge K. et al. Annual 10-Month Aerial Life Phase in the Common Swift Apus apus . Curr Biol 2016; 26: 3066-3070 DOI: 10.1016/j.cub.2016.09.014.
  • 4 Holmgren J. Roosting in tree foliage by Common Swift Apus apus . Ibis 2004; 146: 404-416 DOI: 10.1111/j.1474-919X.2004.00274.x.
  • 5 Jacobsen LB, Jensen NO, Willemoes M. et al. Annual spatiotemporal migration schedules in three larger insectivorous birds: European nightjar, common swift and common cuckoo. Anim Biotelemetry 2017; 5: 4 DOI: 10.1186/s40317-017-0119-x.
  • 6 Muijres FT, Henningsson P, Stuiver M. et al. Aerodynamic flight performance in flap-gliding birds and bats. J Theor Biol 2012; 306: 120-128 DOI: 10.1016/j.jtbi.2012.04.014.
  • 7 Oloś G. Is “banging” an antipredator behaviour in Common Swift (Apus apus)?. Ornis Fenn 2017; 94: 45-52
  • 8 Rattenborg NC, Voirin B, Cruz SM. et al. Evidence that birds sleep in mid-flight. Nat Commun 2016; 7: 1-9 DOI: 10.1038/ncomms12468.
  • 9 Wellbrock AHJ, Bauch C, Rozman J. et al. ‘Same procedure as last year?‘ Repeatedly tracked swifts show individual consistency in migration pattern in successive years. J Avian Biol 2017; 48: 897-903 DOI: 10.1111/jav.01251.
  • 10 Tigges U. The Breeding Cycle in Calendar of the Common Swift Apus apus across its Eurasian Breeding Range – A testable Hypothesis?. Podoces 2006; 1: 27-33
  • 11 Rajchard J, Procházka J, Kindlmann P. Long-term decline in Common Swift Apus apus annual breeding success may be related to weather conditions. Ornis Fenn 2006; 83: 66-72
  • 12 Haupt C. Radiologische Diagnostik am Mauersegler (Apus apus Linnaeus, 1758): Anatomie und Pathologie des Skeletts und ein Beitrag zur tierärztlichen Therapie und Prognose [Dissertation]. Gießen: Justus-Liebig University, Faculty of Veterinary Medicine; 2009
  • 13 Matthes H. Recovery of a hand-reared Common Swift (Apus apus). APUSlife 2006; 3035: ISSN 1438-2261
  • 14 Gerbermann H, Korbel R, Kösters J. Zum Vorkommen von Chlamydia psittaci-Infektionen bei verschiedenen einheimischen Wildvögeln. Proceedings of the 9th DVG-Tagung über Vogelkrankheiten; München: 1994: 131-142
  • 15 Borrelli L, Fioretti A, Russo TP. et al. First report of Salmonella enterica serovar Infantis in common swifts (Apus apus). Avian Pathol 2013; 42: 323-326 DOI: 10.1080/03079457.2013.799262.
  • 16 Hendriksen RS, Vieira AR, Karlsmose S. et al. Global monitoring of salmonella serovar distribution from the world health organization global foodborne infections network country data bank: Results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 2011; 8: 887-900 DOI: 10.1089/fpd.2010.0787.
  • 17 Sow AI, Seydi M, Thiaw M. et al. Les salmonelloses au centre hospitalier universitaire de Fann a Dakar: Aspects bacteriologiques. Med Mal Infect 2000; 30: 657-660 DOI: 10.1016/S0399-077X(00)80037-2..
  • 18 White PL, Baker AR, James WO. Strategies to control Salmonella and Campylobacter in raw poultry products. Rev Sci Tech 1997; 16: 525-541 DOI: 10.20506/rst.16.2.1046.
  • 19 Medeiros MIC, Neme SN, da Silva P. et al. Etiology of acute diarrhea among children in Ribeirão Preto-SP, Brazil. Rev Inst Med Trop Sao Paulo 2001; 43: 21-24 DOI: 10.1590/S0036-46652001000100004..
  • 20 Barba M, Mazza A, Guerriero C. et al. Wasting lives: the effects of toxic waste exposure on health. The case of Campania, Southern Italy. Cancer Biol Ther 2011; 12: 106-111
  • 21 Olsen AR, Hammack TS. Isolation of Salmonella spp. from the housefly, Musca domestica L., and the dump fly, Hydrotaea aenescens (Wiedemann) (Diptera: Muscidae), at caged-layer houses. J Food Prot 2000; 63: 958-960 DOI: 10.4315/0362-028X-63.7.958.
  • 22 Gaffuri A, Holmes JP. Salmonella infections. In: Gavier-Widen D, Duff JP, Meredith A. eds. Infectious Diseases of Wild Mammals and Birds in Europe. Chichester: Wiley-Blackwell; 2012: 386-397
  • 23 Tizard I. Salmonellosis in wild birds. Semin Avian Exot Pet Med 2004; 13: 50-66
  • 24 Hoelzer K, Isabel A, Switt M. et al. Animal contact as a source of human non-typhoidal salmonellosis. Vet Res 2011; 42: 1-28
  • 25 Tate CR, Miller RG, Mallinson ET. et al. The isolation of salmonellae from poultry environmental samples by several enrichment procedures using plating media with and without novobiocin. Poult Sci 1990; 69: 721-726 DOI: 10.3382/ps.0690721.
  • 26 Bennett AR, MacPhee S, Betts R. et al. Use of pyrrolidonyl peptidase to distinguish Citrobacter from Salmonella. Lett Appl Microbiol 1999; 28: 175-178 DOI: 10.1046/j.1365-2672.1999.00514.x.
  • 27 Park S, Ryu S, Kang D. Development of an Improved Selective and Differential Medium for Isolation of Salmonella spp . J Clin Microbiol 2012; 50: 3222-3226 DOI: 10.1128/JCM.01228-12.