Synlett 2022; 33(12): 1142-1153
DOI: 10.1055/a-1608-5633
cluster
Organic Photoredox Catalysis in Synthesis – Honoring Prof. Shunichi Fukuzumi’s 70th Birthday

Organic Photoredox Catalysts Exhibiting Long Excited-State Lifetimes

Dong Yeun Jeong
,
Youngmin You
The authors acknowledges the financial support of the National Research Foundation of Korea (Grant Numbers NRF-2019R1A2C2003969, NRF-2015M3D1A1070639, and NRF-2019R1A4A1029052) funded by the Ministry of Science, Information, and Communication Technology and Future Planning.


Abstract

Organic photoredox catalysts with a long excited-state lifetime have emerged as promising alternatives to transition-metal-complex photocatalysts. This paper explains the effectiveness of using long-lifetime photoredox catalysts for organic transformations, focusing on the structures and photophysics that enable long excited-state lifetimes. The electrochemical potentials of the reported organic, long-lifetime photocatalysts are compiled and compared with those of the representative Ir(III)- and Ru(II)-based catalysts. This paper closes by providing recent demonstrations of the synthetic utility of the organic catalysts.

1 Introduction

2 Molecular Structure and Photophysics

3 Photoredox Catalysis Performance

4 Catalysis Mediated by Long-Lifetime Organic Photocatalysts

4.1 Photoredox Catalytic Generation of a Radical Species and its Addition to Alkenes

4.2 Photoredox Catalytic Generation of a Radical Species and its Addition to Arenes

4.3 Photoredox Catalytic Generation of a Radical Species and its Addition to Imines

4.4 Photoredox Catalytic Generation of a Radical Species and its Addition to Substrates Having C≡X Bonds (X=C, N)

4.5 Photoredox Catalytic Generation of a Radical Species and its Bond Formation with Transition Metals

4.6 Miscellaneous Reactions of Radical Species Generated by Photoredox Catalysis

5 Conclusions



Publication History

Received: 28 July 2021

Accepted after revision: 24 August 2021

Accepted Manuscript online:
24 August 2021

Article published online:
05 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
  • 2 Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
  • 3 Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
  • 4 Xuan J, Xiao WJ. Angew. Chem. Int. Ed. 2012; 51: 6828
  • 5 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 6 Reckenthäler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
  • 7 Hari DP, König B. Chem. Commun. 2014; 50: 6688
  • 8 Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874
  • 9 Schultz DM, Yoon TP. Science 2014; 343: 985
  • 10 Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
  • 11 Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
  • 12 Ghosh I, Marzo L, Das A, Shaikh R, König B. Acc. Chem. Res. 2016; 49: 1566
  • 13 Lang X, Zhao J, Chen X. Chem. Soc. Rev. 2016; 45: 3026
  • 14 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 15 Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
  • 16 Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
  • 17 Staveness D, Bosque I, Stephenson CR. J. Acc. Chem. Res. 2016; 49: 2295
  • 18 Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
  • 19 Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
  • 20 Michelin C, Hoffmann N. ACS Catal. 2018; 8: 12046
  • 21 Buzzetti L, Crisenza GE. M, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 3730
  • 22 McAtee RC, McClain EJ, Stephenson CR. J. Trends Chem. 2019; 1: 111
  • 23 Cheng W.-M, Shang R. ACS Catal. 2020; 10: 9170
  • 24 Yu X.-Y, Zhao Q.-Q, Chen J, Xiao W.-J, Chen J.-R. Acc. Chem. Res. 2020; 53: 1066
  • 25 Higginbotham HF, Yi C.-L, Monkman AP, Wong K.-T. J. Phys. Chem. C 2018; 122: 7627
  • 26 Tanaka H, Shizu K, Miyazaki H, Adachi C. Chem. Commun. 2012; 48: 11392
  • 27 Santos PL, Ward JS, Data P, Batsanov AS, Bryce MR, Dias FB, Monkman AP. J. Mater. Chem. C 2016; 4: 3815
  • 28 Hwang S, Moon YK, Jang HJ, Kim S, Jeong H, Lee JY, You Y. Commun. Chem. 2020; 3: 53
  • 29 Moon YK, Jang HJ, Hwang S, Kang S, Kim S, Oh J, Lee S, Kim D, Lee JY, You Y. Adv. Mater. 2021; 33: 2003832
  • 30 Penfold TJ, Gindensperger E, Daniel C, Marian CM. Chem. Rev. 2018; 118: 6975
  • 31 Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature 2012; 492: 234
  • 32 Bryden MA, Zysman-Colman E. Chem. Soc. Rev. 2021; 50: 7587
  • 33 Chen W, Song F. Chin. Chem. Lett. 2019; 30: 1717
  • 34 Bonardi A.-H, Dumur F, Noirbent G, Lalevée J, Gigmes D. Beilstein J. Org. Chem. 2018; 14: 3025
  • 35 Singh PP, Srivastava V. Org. Biomol. Chem. 2021; 19: 313
  • 36 Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
  • 37 Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353
  • 38 Cai S, Tian Y, Zhang J, Liu Z, Lu M, Weng W, Huang M. Adv. Synth. Catal. 2018; 360: 4084
  • 39 Lu M, Liu Z, Zhang J, Tian Y, Qin H, Huang M, Hu S, Cai S. Org. Biomol. Chem. 2018; 16: 6564
  • 40 Wang H, Zhang J, Shi J, Li F, Zhang S, Xu K. Org. Lett. 2019; 21: 5116
  • 41 Huang H, Yu C, Zhang Y, Zhang Y, Mariano PS, Wang W. J. Am. Chem. Soc. 2017; 139: 9799
  • 42 Jiang H, Studer A. Chem. Eur. J. 2019; 25: 516
  • 43 Vaillant FL, Garreau M, Nicolai S, Gryn'ova G, Corminboeuf C, Waser J. Chem. Sci. 2018; 9: 5883
  • 44 Shen J, Zhang Y, Yu Y, Wang M. Org. Chem. Front. 2021; 8: 901
  • 45 Phelan JP, Lang SB, Compton JS, Kelly CB, Dykstra R, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2018; 140: 8037
  • 46 Lang SB, Wiles RJ, Kelly CB, Molander GA. Angew. Chem. Int. Ed. 2017; 56: 15073
  • 47 Milligan JA, Phelan JP, Polites VC, Kelly CB, Molander GA. Org. Lett. 2018; 20: 6840
  • 48 Donabauer K, Maity M, Berger AL, Huff GS, Crespi S, König B. Chem. Sci. 2019; 10: 5162
  • 49 Alam R, Molander GA. Org. Lett. 2018; 20: 2680
  • 50 Ou W, Zhang G, Wu J, Su C. ACS Catal. 2019; 9: 5178
  • 51 Matsui JK, Primer DN, Molander GA. Chem. Sci. 2017; 8: 3512
  • 52 Sherwood TC, Li N, Yazdani AN, Murali Dhar T G. J. Org. Chem. 2018; 83: 3000
  • 53 Li J.-X, Li L, Zhou M.-D, Wang H. Org. Chem. Front. 2018; 5: 1003
  • 54 Patel NR, Kelly CB, Siegenfeld AP, Molander GA. ACS Catal. 2017; 7: 1766
  • 55 Guo J, Wu Q.-L, Xie Y, Weng J, Lu G. J. Org. Chem. 2018; 83: 12559
  • 56 Lyu X.-L, Huang S.-S, Song H.-J, Liu Y.-X, Wang Q.-M. RSC Adv. 2019; 9: 36213
  • 57 Liu Y, Chen X.-L, Li X.-Y, Zhu S.-S, Li S.-J, Song Y, Qu L.-B, Yu B. J. Am. Chem. Soc. 2021; 143: 964
  • 58 Barzanò G, Mao R, Garreau M, Waser J, Hu X. Org. Lett. 2020; 22: 5412
  • 59 He M, Yu X, Wang Y, Li F, Bao M. J. Org. Chem. 2021; 86: 5016
  • 60 Pawar GG, Robert F, Grau E, Cramail H, Landais Y. Chem. Commun. 2018; 54: 9337
  • 61 Guo J, Huang G.-B, Wu Q.-L, Xie Y, Weng J, Lu G. Org. Chem. Front. 2019; 6: 1955