Subscribe to RSS
DOI: 10.1055/a-1704-0332
Pyruvatkinasemangel der Erythrozyten
Red cell pyruvate kinase deficiency
ZUSAMMENFASSUNG
Die kongenitalen hämolytischen Anämien sind seltene Störungen der Hämatopoese und stellen eine diagnostische und therapeutische Herausforderung für den Allgemeinpädiater und den Neonatologen dar. Zur Differenzialdiagnose gehören die Enzymdefekte der Erythrozyten. Diese betreffen einen der drei Stoffwechselwege der Erythrozyten: den Embden-Meyerhof-Weg (Glykolyse), den Pentosephosphatweg oder den Nukleotidstoffwechsel. Der häufigste Enzymdefekt der Glykolyse ist der Pyruvatkinasemangel (PK-Mangel). Es handelt sich dabei um eine seltene hereditäre nicht sphärozytäre hämolytische Anämie. Die Prävalenz des diagnostizierten PK-Mangels wird zwischen 3,2 und 8,5 pro Million Einwohner geschätzt [14]. Vermutlich ist die Prävalenz aufgrund der vielen nicht diagnostizierten Fällen deutlich höher [14]. Im Rahmen dieses Beitrags wird ein diagnostischer Algorithmus präsentiert, der als Leitfaden für den Allgemeinpädiater und den Neonatologen dienen soll.
ABSTRACT
The congenital hemolytic anemias are rare disorders of hematopoiesis and represent a diagnostic and therapeutic challenge for the general pediatrician and the neonatologist. Differential diagnosis should include the red cell enzymopathies. These affect one of the three metabolic pathways of red cells: the Embden-Meyerhof pathway (glycolysis), the hexose monophosphate shunt or the nucleotide metabolism. The most common enzyme defect in glycolysis is pyruvate kinase deficiency (PKD). It is a rare hereditary non-spherocytic hemolytic anemia. The prevalence of diagnosed PKD is estimated to be between 3.2 and 8.5 per million [14]. However, the prevalence of PKD is probably higher because of many undiagnosed cases [14]. In this paper, we present a diagnostic algorithm to serve as a guide for the general pediatrician and the neonatologist.
Publication History
Received: 15 March 2021
Accepted: 21 March 2021
Article published online:
25 February 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG,
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Akiyoshi K, Sekiguchi K, Okamoto T. et al Cord blood transplantation in a young child with pyruvate kinase deficiency. Pediatrics international 2016; 58 (07) 634-636
- 2 Al-Samkari H, van Beers EJ, Kuo KHM. et al The variable manifestations of disease in pyruvate kinase deficiency and their management. Haematologica 2020; 105 (09) 2229-2239
- 3 Bianchi P, Fermo E. Molecular heterogeneity of pyruvate kinase deficiency. Haematologica 2020; 105 (09) 2218-2228
- 4 Glader B, Barcellini W, Grace R.. Pyruvate Kinase Deficiency. Oxford, UK: S. Karger Publishers Limited; 2018
- 5 Grace RF, Bianchi P, van Beers EJ. et al Clinical spectrum of pyruvate kinase deficiency. Data from the Pyruvate Kinase Deficiency Natural History Study. Blood 2018; 131 (20) 2183-2192
- 6 Grace RF, Mark Layton D, Barcellini W. How we manage patients with pyruvate kinase deficiency. British journal of haematology 2019; 184 (05) 721-734
- 7 Grace RF, Rose C, Layton DM. et al Safety and Efficacy of Mitapivat in Pyruvate Kinase Deficiency. The New England journal of medicine 2019; 381 (10) 933944
- 8 Grace RF, Zanella A, Neufeld EJ. et al Erythrocyte pyruvate kinase deficiency. 2015 status report. American journal of hematology 2015; 90 (09) 825-830
- 9 Hospital Universitario Fundación Jiménez Díaz and Stanford University. Gene Therapy for Pyruvate Kinase Deficiency (PKD) (September 2019). Im Internet. www.clinicaltrials.gov/ct2/show/NCT04105166?term=gene+therapy&cond=Pyruvate+Kinase+Deficiency&draw=2&rank=1 Stand:17.02.2021
- 10 Klothaki P, Grace R, Eber S. et al Pyruvatkinasemangel der Erythrozyten in Deutschland. Monatsschr Kinderheilkd 2021; 37 (02) 128
- 11 Medical Affairs Agios Pharmaceuticals. Inc. Extension Study of AG-348 in Adult Participants With Pyruvate Kinase Deficiency Previously Enrolled in AG-348–006 or AG348-C-007(February 2019). Im Internet. https://clinicaltrials.gov/ct2/show/NCT03853798 Stand:17.02.2021
- 12 Niemeyer C, Eggert A.. Pädiatrische Hämatologie und Onkologie, 2. Aufl. Berlin, Freiburg: Springer; 2017
- 13 Rab MAE, van Oirschot BA, Kosinski PA. et al AG-348 (Mitapivat), an allosteric activator of red blood cell pyruvate kinase, increases enzymatic activity, protein stability, and ATP levels over a broad range of PKLR genotypes. Haematologica 2021; 106 (01) 238-249
- 14 Secrest MH, Storm M, Carrington C. et al Prevalence of pyruvate kinase deficiency. A systematic literature review. European journal of haematology 2020; 105 (02) 173-184
- 15 Shimomura M, Doi T, Nishimura S. et al Successful allogeneic bone marrow transplantation using immunosuppressive conditioning regimen for a patient with red blood cell transfusiondependent pyruvate kinase deficiency anemia. Hematology reports 2020; 12 (01) 8305
- 16 van Beers EJ, van Straaten S, Morton DH. et al Prevalence and management of iron overload in pyruvate kinase deficiency. Report from the Pyruvate Kinase Deficiency Natural History Study. Haematologica 2019; 104 (02) e51-e53
- 17 van Straaten S, Bierings M, Bianchi P. et al Worldwide study of hematopoietic allogeneic stem cell transplantation in pyruvate kinase deficiency. Haematologica 2018; 103 (02) e82-e86
- 18 Zanella A, Fermo E, Bianchi P. et al Red cell pyruvate kinase deficiency. Molecular and clinical aspects. British journal of haematology 2005; 130 (01) 11-25
- 19 Zanella A, Fermo E, Bianchi P. et al Pyruvate kinase deficiency. The genotype-phenotype association. Blood reviews 2007; 21 (04) 217-231
- 20 Zaninoni A, Fermo E, Vercellati C. et al Congenital Hemolytic Anemias. Is There a Role for the Immune System?. Frontiers in immunology 2020; 11: 1309