Klin Padiatr 2022; 234(05): 267-276
DOI: 10.1055/a-1717-2178
Original Article

Evaluating Children and Adolescents with Suspected Exercise Induced Asthma: Real Life Data

Untersuchung von Kindern und Jugendlichen mit Verdacht auf belastungsinduziertes Asthma: Real Life Daten
Melanie Dreßler
1   Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
,
Helena Donath
1   Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
,
Thao Uyen Quang
1   Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
,
Martin Hutter
1   Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
,
Jordis Trischler
1   Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
,
Stefan Zielen
1   Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
,
Johannes Schulze
1   Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
,
Katharina Blümchen
1   Division of Allergy, Pulmonology and Cystic fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
› Author Affiliations

Abstract

Objective Exercise-induced bronchoconstriction (EIB) occurs frequently in children and adolescents and may be a sign of insufficient asthma control. EIB is often evaluated by respiratory symptoms, spirometry, eNO measurement and methacholine testing (MCT) instead of time consuming exercise test. Aim of this study was to analyse the amount of patients for which an exercise challenge in a cold chamber (ECC) was needed for a clear EIB diagnosis, to characterize EIB phenotypes and the incidence of exercise induced laryngeal obstruction (EILO) in a large cohort of patients with EIB.

Methods A retrospective analysis was performed in 595 children and adolescents (mean age 12.1 years) with suspected EIB from January 2014 to December 2018. Complete data sets of skin prick test, spirometry, eNO and MCT were available from 336 patients.

Results An ECC to confirm the EIB diagnosis was performed in 125 (37.2%) of patients. Three EIB phenotypes were detected: group 1: EIB without allergic sensitization (n=159); group 2: EIB with other than house dust mite (HDM) sensitization (n=87) and group 3: EIB with HDM sensitization (n=90). MCT and eNO showed significant differences between the subgroups: An eNO>46 ppb and/or a MCT<0.1 mg was found in 23.9% vs. 50.6% vs. 57.8% in group 1–3, respectively. Significantly more patients suffered from EILO in group 1 compared to group 2 and 3 (n=13 vs. n=1).

Conclusion EIB without sensitization is as often as EIB with sensitization. In patients without sensitization, EILO has to be considered as a possible cause of symptoms during exercise.

Zusammenfassung

Einleitung Belastungsinduzierte Bronchokonstriktion (EIB) tritt häufig bei Kindern und Jugendlichen auf und kann Anzeichen für unzureichende Asthmakontrolle sein. Häufig wird die Diagnose EIB anhand der Atemwegssymptome, Spirometrie, eNO-Messung und Methacholin-Tests (MCT) gestellt anstatt mittels zeitaufwändigem Belastungstest. Ziel dieser Studie war es zu ermitteln bei wie vielen Patienten eine Kältelaufbelastung (ECC) zur Bestätigung der Diagnose EIB benötigt wurde, die EIB-Phänotypen zu charakterisieren und die Anzahl der Patienten mit belastungsinduzierter Larynxobstruktion (EILO) in einer großen Kohorte von Patienten mit Verdacht auf EIB zu ermitteln.

Zielsetzung Retrospektive Analyse von 595 Patient*innen mit Verdacht auf EIB (Durchschnittsalter 12,1 Jahre) von Januar 2014 bis Dezember 2018. Von 336 Patient*innen standen vollständige Datensätze zu Haut-Prick-Tests, Spirometrie, eNO und MCT zur Verfügung.

Ergebnisse Bei 125 (37,2%) der Patient*innen wurde eine ECC zum Nachweis einer EIB benötigt. Drei EIB-Phänotypen wurden herausgearbeitet: Gruppe 1: EIB ohne Sensibilisierung (n=159); Gruppe 2: EIB mit sonstiger Sensibilisierung (n=87) und Gruppe 3: EIB mit Hausstaubmilbensensibilisierung (n=90). MCT und eNO zeigten signifikante Unterschiede zwischen den drei Gruppen: Ein eNO>46 ppb und/oder ein MCT<0,1 mg wurde bei 23,9% vs. 50,6% vs. 57,8% in den Patientengruppe 1–3 gefunden. EILO war bei Patientengruppe 1 signifikant häufiger als in Gruppe 2 und 3 (n=13 vs. n=1).

Schlussfolgerung EIB ohne Sensibilisierung ist ebenso häufig wie EIB mit Sensibilisierung. Bei Patient*innen ohne Sensibilisierung sollte eine EILO als mögliche Ursache der Beschwerden bei körperlicher Belastung in Betracht gezogen werden.



Publication History

Article published online:
03 February 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Anderson SD, Pearlman DS, Rundell KW. et al. Reproducibility of the airway response to an exercise protocol standardized for intensity, duration, and inspired air conditions, in subjects with symptoms suggestive of asthma. Respir Res 2010 Sep 1 11(1): 120
  • 2 Boulet L, O'Byrne PM. Asthma and exercise-induced bronchoconstriction in athletes. N Engl J Med 2015; 372: 641-648
  • 3 Brasholt M, Baty F, Bisgaard H. Physical activity in young children is reduced with increasing bronchial responsiveness. J Allergy Clin Immunol 2010; 125: 1007-1012
  • 4 Buchvald F, Hermansen MN, Nielsen KG. et al. Exhaled nitric oxide predicts exercise-induced bronchoconstriction in asthmatic school children. Chest 2005; 128: 1964-1967
  • 5 Buchvald F, Phillipsen LD, Hjuler T. et al. Exercise-induced inspiratory symptoms in school children. Pediatr Pulmonol 2016; 51: 1200-1205
  • 6 Carlsen KH, Engh G, Mørk M. et al. Cold air inhalation and exercise-induced bronchoconstriction in relationship to metacholine bronchial responsiveness: different patterns in asthmatic children and children with other chronic lung diseases. Respir Med 1998; 92: 308-315
  • 7 Christensen PM, Thomsen SF, Rasmussen N. et al. Exercise-induced laryngeal obstructions: prevalence and symptoms in the general public. Eur Arch Otorhinolaryngol 2011; 268: 1313-1319
  • 8 Coates AL, Wanger J, Cockcroft DW. et al. ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests. Eur Respir J 2017; 49: 1601526
  • 9 Dreßler M, Fussbroich D, Böhler L. et al. Oil supplementation with a special combination of n-3 and n-6 long-chain polyunsaturated fatty acids does not protect for exercise induced asthma: a double-blind placebo-controlled trial. Lipids Health Dis 2020; Jul 13 19(1): 167
  • 10 Dreßler M, Salzmann-Manrique E, Zielen S. et al. Exhaled NO as a predictor of exercise-induced asthma in cold air. Nitric Oxide 2018; 76: 45-52
  • 11 Dreßler M, Theresa Friedrich T, Lasowski N. et al. Predictors and reproducibility of exercise-induced bronchoconstriction in cold air. BMC Pulm Med 2019 May 16 19(1): 94
  • 12 ElHalawani SM, Ly NT, Mahon RT. et al. Exhaled nitric oxide as a predictor of exercise-induced bronchoconstriction. Chest 2003; 124: 639-643
  • 13 Grzelewski T, Grzelewska A, Majak P. et al. Fractional exhaled nitric oxide (FeNO) may predict exercise-induced bronchoconstriction (EIB) in schoolchildren with atopic asthma. Nitric Oxide 2012; 15 27: 82-87
  • 14 Hallstrand TS, Leuppi JD, Joos G. et al. ERS technical standard on bronchial challenge testing: pathophysiology and methodology of indirect airway challenge testing. Eur Respir J 2018; 15 52: 1801033
  • 15 Heimdal J-H, Roksund OD. Halvorsen Tet al. Continuous laryngoscopy exercise test: A method for visualizing laryngeal dysfunction during exercise. Laryngoscope 2006; 116: 52-57
  • 16 Hull JH, Godbout K, Boulet LP. Exercise-associated dyspnea and stridor: Thinking beyond asthma. J Allergy Clin Immunol Pract 2020; 8: 2202-2208
  • 17 Johansson H, Norlander K, Berglund L. et al. Prevalence of exercise-induced bronchoconstriction and exercise-induced laryngeal obstruction in a general adolescent population. Thorax 2015; 70: 57-63
  • 18 Lødrup Carlsen KC, Håland G, Devulapalli CS. et al. Asthma in every fifth child in Oslo, Norway: a 10-year follow up of a birth cohort study. Allergy 2006; 61: 454-460
  • 19 Maat RC, Hilland M, Røksund OD. et al. Exercise-induced laryngeal obstruction: natural history and effect of surgical treatment. Eur Arch Otorhinolaryngol 2011; 268: 1485-1492
  • 20 Maat RC, Røksund OD, Halvorsen T. et al. Audiovisual assessment of exercise-induced laryngeal obstruction: Reliability and validity of observations. Eur Arch Otorhinolaryngol 2009; 266: 1929-1936
  • 21 Nielsen EW, Hull JH, Backer V. High Prevalence of Exercise-Induced Laryngeal Obstruction in Athletes. Med Sci Sports Exerc 2013; 45: 2030-2035
  • 22 Parsons JP, Hallstrand TS, Mastronarde JG. et al. An official American Thoracic Society clinical practice guideline: exercise-induced bronchoconstriction. Am J Respir Crit Care Med 2013; 187: 1016-1027
  • 23 Parsons JP, Kaeding C, Phillips G. et al. Prevalence of exercise-induced bronchospasm in a cohort of varsity college athletes. Medicine & Science in Sports & Exercise 2007; 39: 1487-1492
  • 24 Platts-Mills et al. Pro: The evidence for a causal role of dust mites in asthma. Am J Respir Crit Care Med 2009; 180: 109-113
  • 25 Quanjer PH, Stanojevic S, Cole TJ. et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J 2012; 40: 1324-1343
  • 26 Røksund OD, Heimdal J-H, Clemm H. et al. Exercise inducible laryngeal obstruction: Diagnostics and management. Paediatr Respir Rev 2017; 21: 86-94
  • 27 Rouhos A, Ekroos H, Karjalainen J. et al. Exhaled nitric oxide and exercise-induced bronchoconstriction in young male conscripts: association only in atopics. Allergy 2005; 60: 1493-1498
  • 28 Rundell KW, Slee JB. Exercise and other indirect challenges to demonstrate asthma or exercise-induced bronchoconstriction in athletes. J Allergy Clin Immunol 2008; 122: 238-246 quiz 247-8.
  • 29 Schulze J, Rosewich M, Riemer C. et al. Methacholine challenge-comparison of an ATS protocol to a new rapid single concentration technique. Respir Med 2009; 103: 1898-1903
  • 30 Schulze J, Smith HJ, Eichhorn C. et al. Correlation of spirometry and body plethysmography during exercise-induced bronchial obstruction. Respir Med 2019; 148: 54-59
  • 31 Sears MR, Greene JM, Willan AR. et al. A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. N Engl J Med 2003; 9 349: 1414-1422
  • 32 Seear M, Wensley D, West N. How accurate is the diagnosis of exercise induced asthma among Vancouver schoolchildren?. Arch Dis Child 2005; 90: 898-902
  • 33 Shay EO, Sayad E, Milstein CF. Exercise-induced laryngeal obstruction (EILO) in children and young adults: From referral to diagnosis. Laryngoscope. 2020; 130: E400-E406
  • 34 Weiler JM, Hallstrand TS, Parsons JP. et al. Improving screening and diagnosis of exercise-induced bronchoconstriction: a call to action. J Allergy Clin Immunol Pract 2014; 2: 275-280.e277
  • 35 Yoshikawa T, Shoji S, Fujii T. et al. Severity of exercise-induced bronchoconstriction is related to airway eosinophilic inflammation in patients with asthma. ERS 1998; 12: 879-884