Rofo 2022; 194(08): 841-851
DOI: 10.1055/a-1761-3500
Review

Fetal Cardiovascular MRI – A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives

Fetale kardiovaskuläre MRT – eine systematische Übersicht der Literatur: Herausforderungen, neue technische Entwicklungen und Perspektiven
Janine Knapp
1   Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Manuela Tavares de Sousa
2   Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Björn P. Schönnagel
1   Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
› Author Affiliations

Abstract

Background Fetal magnetic resonance imaging (MRI) has become a valuable adjunct to ultrasound in the prenatal diagnosis of congenital pathologies of the central nervous system, thorax, and abdomen. Fetal cardiovascular magnetic resonance (CMR) was limited, mainly by the lack of cardiac gating, and has only recently evolved due to technical developments.

Method A literature search was performed on PubMed, focusing on technical advancements to perform fetal CMR. In total, 20 publications on cardiac gating techniques in the human fetus were analyzed.

Results Fetal MRI is a safe imaging method with no developmental impairments found to be associated with in utero exposure to MRI. Fetal CMR is challenging due to general drawbacks (e. g., fetal motion) and specific limitations such as the difficulty to generate a cardiac gating signal to achieve high spatiotemporal resolution. Promising technical advancements include new methods for fetal cardiac gating, based on novel post-processing approaches and an external hardware device, as well as motion compensation and acceleration techniques.

Conclusion Newly developed direct and indirect gating approaches were successfully applied to achieve high-quality morphologic and functional imaging as well as quantitative assessment of fetal hemodynamics in research settings. In cases when prenatal echocardiography is limited, e. g., by an unfavorable fetal position in utero, or when its results are inconclusive, fetal CMR could potentially serve as a valuable adjunct in the prenatal assessment of congenital cardiovascular malformations. However, sufficient data on the diagnostic performance and clinical benefit of new fetal CMR techniques is still lacking.

Key Points:

  • New fetal cardiac gating methods allow high-quality fetal CMR.

  • Motion compensation and acceleration techniques allow for improvement of image quality.

  • Fetal CMR could potentially serve as an adjunct to fetal echocardiography in the future.

Citation Format

  • Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI – A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. Fortschr Röntgenstr 2022; 194: 841 – 851

Zusammenfassung

Hintergrund Die fetale Magnetresonanztomographie (MRT) hat sich in der pränatalen Diagnostik kongenitaler Pathologien des zentralen Nervensystems, Thorax und Abdomens als wertvolle Ergänzung zum Ultraschall etabliert. Die fetale kardiovaskuläre MRT (CMR) war bisher insbesondere durch das Fehlen geeigneter Gating-Methoden limitiert und wurde erst kürzlich durch technische Entwicklungen ermöglicht.

Methode Die Literaturrecherche wurde in PubMed durchgeführt und fokussierte sich auf technische Fortschritte zur Umsetzung der fetalen CMR. Insgesamt wurden 20 Publikationen zu kardialen Gating-Methoden im humanen Fetus analysiert.

Ergebnisse Die fetale MRT ist eine sichere Bildgebungsmodalität ohne assoziiertes Risiko kindlicher Entwicklungsbeeinträchtigungen. Die fetale CMR stellt aufgrund allgemeiner Hindernisse (z. B. fetaler Bewegung) und spezifischer Limitationen wie etwa die Schwierigkeit, ein kardiales Gating-Signal und damit hohe örtliche und zeitliche Auflösungen zu generieren, eine Herausforderung dar. Vielversprechende technische Entwicklungen umfassen neue Gating-Methoden mittels retrospektiver Nachbearbeitung oder separater Hardware sowie Bewegungskompensations- und Beschleunigungstechnologien.

Schlussfolgerung Neu entwickelte direkte und indirekte Gating-Methoden konnten erfolgreich angewendet werden, um im Rahmen wissenschaftlicher Arbeiten qualitativ hochwertige morphologische und funktionelle Bilddaten sowie die quantitative Beurteilung der fetalen Hämodynamik zu ermöglichen. In Fällen, in denen die pränatale Echokardiografie z. B. durch eine ungünstige fetale Lage in utero limitiert ist oder in denen sie unklare Ergebnisse liefert, könnte die fetale CMR potenziell als wertvolle Ergänzung in der pränatalen Diagnostik kongenitaler kardiovaskulärer Fehlbildungen dienen. Allerdings ist die Datenlage zur diagnostischen Leistungsfähigkeit und zum klinischen Nutzen dieser neuen Techniken bisher noch unzureichend.

Kernaussagen:

  • Neue fetale kardiale Gating-Methoden ermöglichen die qualitativ hochwertige fetale CMR.

  • Bewegungskompensations- und Beschleunigungstechnologien sorgen für eine Verbesserung der Bildqualität.

  • Die fetale CMR könnte künftig als Ergänzung zur fetalen Echokardiografie dienen.



Publication History

Received: 08 February 2021

Accepted: 20 January 2022

Article published online:
29 July 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Roy CW. et al. Fetal Cardiac MRI: A Review of Technical Advancements. Top Magn Reson Imaging 2019; 28 (05) 235-244
  • 2 Verburg B. et al. The Contribution of MRI after Fetal Anomalies Have Been Diagnosed by Ultrasound: Correlation with Postnatal Outcomes. Fetal Diagn Ther 2015; 38 (03) 186-194
  • 3 Prayer D. et al. ISUOG Practice Guidelines: performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol 2017; 49 (05) 671-680
  • 4 Gat I. et al. Fetal Brain MRI: Novel Classification and Contribution to Sonography. Ultraschall in Med 2016; 37 (02) 176-184
  • 5 Maulik D. et al. A brief history of fetal echocardiography and its impact on the management of congenital heart disease. Echocardiography 2017; 34 (12) 1760-1767
  • 6 Hoffman JI. The challenge in diagnosing coarctation of the aorta. Cardiovasc J Afr 2019; 29 (04) 252-255
  • 7 Dong SZ. et al. Fetal cardiac MRI: a single center experience over 14-years on the potential utility as an adjunct to fetal technically inadequate echocardiography. Sci Rep 2020; 10 (01) 12373
  • 8 Mervak BM. et al. MRI in pregnancy: Indications and practical considerations. J Magn Reson Imaging 2019; 49 (03) 621-631
  • 9 Heinrichs WL. et al. Midgestational exposure of pregnant BALB/c mice to magnetic resonance imaging conditions. Magn Reson Imaging 1988; 6 (03) 305-313
  • 10 Tyndall DA, Sulik KK. Effects of magnetic resonance imaging on eye development in the C57BL/6J mouse. Teratology 1991; 43 (03) 263-275
  • 11 Ray JG. et al. Association Between MRI Exposure During Pregnancy and Fetal and Childhood Outcomes. JAMA 2016; 316 (09) 952-961
  • 12 Bouyssi-Kobar M. et al. Fetal magnetic resonance imaging: exposure times and functional outcomes at preschool age. Pediatr Radiol 2015; 45 (12) 1823-1830
  • 13 Chartier AL. et al. The Safety of Maternal and Fetal MRI at 3 T. Am J Roentgenol 2019; 213 (05) 1170-1173
  • 14 Jaimes C. et al. Does 3-T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetuses scanned at 1.5 and 3 T. Pediatr Radiol 2019; 49 (01) 37-45
  • 15 Reeves MJ. et al. Neonatal cochlear function: measurement after exposure to acoustic noise during in utero MR imaging. Radiology 2010; 257 (03) 802-809
  • 16 Strizek B. et al. Safety of MR Imaging at 1.5 T in Fetuses: A Retrospective Case-Control Study of Birth Weights and the Effects of Acoustic Noise. Radiology 2015; 275 (02) 530-537
  • 17 Coakley F. et al. UCSF Department of Radiology & Biomedical Imaging: CT and MR Pregnancy Guidelines – Guidelines for the Use of CT and MRI during Pregnancy and Lactation.
  • 18 Glover P. et al. An assessment of the intrauterine sound intensity level during obstetric echo-planar magnetic resonance imaging. Br J Radiol 1995; 68: 1090-1094
  • 19 Ruckhaberle E. et al. In vivo intrauterine sound pressure and temperature measurements during magnetic resonance imaging (1.5 T) in pregnant ewes. Fetal Diagn Ther 2008; 24 (03) 203-210
  • 20 Kanal E. et al. ACR guidance document for safe MR practices: 2007. Am J Roentgenol 2007; 188 (06) 1447-1474
  • 21 Administration, U.S.F.D. MHRA Safety Guidelines for Magnetic Resonance Imaging Equipment in Clinical Use. 2015
  • 22 Tsai-Goodman B. et al. Foetal blood flow measured using phase contrast cardiovascular magnetic resonance--preliminary data comparing 1.5 T with 3.0 T. J Cardiovasc Magn Reson 2015; 17: 30
  • 23 Tirada N. et al. Imaging Pregnant and Lactating Patients. Radiographics 2015; 35 (06) 1751-1765
  • 24 Kienzl D. et al. Risk of inferior vena cava compression syndrome during fetal MRI in the supine position – a retrospective analysis. J Perinat Med 2014; 42 (03) 301-306
  • 25 Abaci Turk E. et al. Individual variation in simulated fetal SAR assessed in multiple body models. Magn Reson Med 2020; 83 (04) 1418-1428
  • 26 Fraum TJ. et al. Gadolinium-based contrast agents: A comprehensive risk assessment. J Magn Reson Imaging 2017; 46 (02) 338-353
  • 27 Jansz MS. et al. Metric optimized gating for fetal cardiac MRI. Magn Reson Med 2010; 64 (05) 1304-1314
  • 28 Haris K. et al. Free-breathing fetal cardiac MRI with doppler ultrasound gating, compressed sensing, and motion compensation. J Magn Reson Imaging 2020; 51 (01) 260-272
  • 29 Malamateniou C. et al. Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 2013; 34 (06) 1124-1136
  • 30 Roy CW. et al. Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing. J Cardiovasc Magn Reson 2017; 19 (01) 29
  • 31 van Amerom JFP. et al. Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection. Magn Reson Med 2018; 79 (01) 327-338
  • 32 Firpo C, Hoffman JI, Silverman NH. Evaluation of fetal heart dimensions from 12 weeks to term. Am J Cardiol 2001; 87 (05) 594-600
  • 33 Tan J. et al. Cardiac dimensions determined by cross-sectional echocardiography in the normal human fetus from 18 weeks to term. Am J Cardiol 1992; 70 (18) 1459-1467
  • 34 Dong SZ, Zhu M, Li F. Preliminary experience with cardiovascular magnetic resonance in evaluation of fetal cardiovascular anomalies. J Cardiovasc Magn Reson 2013; 15: 40
  • 35 Lloyd DF. et al. An exploration of the potential utility of fetal cardiovascular MRI as an adjunct to fetal echocardiography. Prenat Diagn 2016; 36 (10) 916-925
  • 36 Manganaro L. et al. Fetal MRI of the cardiovascular system: role of steady-state free precession sequences for the evaluation of normal and pathological appearances. Radiol Med 2009; 114 (06) 852-870
  • 37 Li X. et al. The value of cardiovascular magnetic resonance in the diagnosis of fetal aortic arch anomalies. J Matern Fetal Neonatal Med 2017; 30 (11) 1366-1371
  • 38 Fogel MA. et al. Preliminary investigations into a new method of functional assessment of the fetal heart using a novel application of 'real-time' cardiac magnetic resonance imaging. Fetal Diagn Ther 2005; 20 (05) 475-480
  • 39 Michel SC. et al. Original report. Fetal cardiographic monitoring during 1.5-T MR imaging. Am J Roentgenol 2003; 180 (04) 1159-1164
  • 40 Hirsch FW. et al. Real-time magnetic resonance imaging in pediatric radiology – new approach to movement and moving children. Pediatr Radiol 2021; 51 (05) 840-846
  • 41 Rower LM. et al. Spirometry-based reconstruction of real-time cardiac MRI: Motion control and quantification of heart-lung interactions. Magn Reson Med 2021; 86 (05) 2692-2702
  • 42 Tsuritani M. et al. Fetal Cardiac Functional Assessment by Fetal Heart Magnetic Resonance Imaging. J Comput Assist Tomogr 2019; 43 (01) 104-108
  • 43 Kording F. et al. Evaluation of a Portable Doppler Ultrasound Gating Device for Fetal Cardiac MR Imaging: Initial Results at 1.5T and 3T. Magn Reson Med Sci 2018; 17 (04) 308-317
  • 44 Abuhamad A, Chaoui R. A Practical Guide to Fetal Echocardiography: Normal and Abnormal Hearts. Vol. 3. Lippincott Williams & Wilki; 2015
  • 45 Roy CW. et al. Dynamic imaging of the fetal heart using metric optimized gating. Magn Reson Med 2013; 70 (06) 1598-1607
  • 46 Roy CW, Seed M, Macgowan CK. Accelerated MRI of the fetal heart using compressed sensing and metric optimized gating. Magn Reson Med 2017; 77 (06) 2125-2135
  • 47 Seed M. et al. Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. J Cardiovasc Magn Reson 2012; 14: 79
  • 48 Bidhult S. et al. Independent validation of metric optimized gating for fetal cardiovascular phase-contrast flow imaging. Magn Reson Med 2019; 81 (01) 495-503
  • 49 Goolaub DS. et al. Multidimensional fetal flow imaging with cardiovascular magnetic resonance: a feasibility study. J Cardiovasc Magn Reson 2018; 20 (01) 77
  • 50 Goolaub DS. et al. Fetal Flow Quantification in Great Vessels Using Motion-Corrected Radial Phase Contrast MRI: Comparison With Cartesian. J Magn Reson Imaging 2020; 53 DOI: 10.1002/jmri.27334.
  • 51 Engvall J. et al. Biplane transoesophageal echocardiography, transthoracic Doppler, and magnetic resonance imaging in the assessment of coarctation of the aorta. Eur Heart J 1995; 16 (10) 1399-1409
  • 52 Macgowan CK. et al. Real-time Fourier velocity encoding: an in vivo evaluation. J Magn Reson Imaging 2005; 21 (03) 297-304
  • 53 Andersson C. et al. Phase-contrast MRI volume flow – a comparison of breath held and navigator based acquisitions. BMC Med Imaging 2016; 16: 26
  • 54 Rosenov A. et al. Praxis (Bern 1994) 2019; 108 (12) 807-813
  • 55 Haris K. et al. Self-gated fetal cardiac MRI with tiny golden angle iGRASP: A feasibility study. J Magn Reson Imaging 2017; 46 (01) 207-217
  • 56 Pruitt A. et al. Fully self-gated whole-heart 4D flow imaging from a 5-minute scan. Magn Reson Med 2021; 85 (03) 1222-1236
  • 57 Chaptinel J. et al. Fetal cardiac cine magnetic resonance imaging in utero. Sci Rep 2017; 7 (01) 15540
  • 58 Macdonald JA. et al. Uteroplacental and Fetal 4D Flow MRI in the Pregnant Rhesus Macaque. J Magn Reson Imaging 2019; 49 (02) 534-545
  • 59 Schrauben EM. et al. Fetal hemodynamics and cardiac streaming assessed by 4D flow cardiovascular magnetic resonance in fetal sheep. J Cardiovasc Magn Reson 2019; 21 (01) 8
  • 60 Roberts TA. et al. Fetal whole heart blood flow imaging using 4D cine MRI. Nat Commun 2020; 11 (01) 4992
  • 61 Kording F. et al. Doppler ultrasound compared with electrocardiogram and pulse oximetry cardiac triggering: A pilot study. Magn Reson Med 2015; 74 (05) 1257-1265
  • 62 Schoennagel BP. et al. Fetal dynamic phase-contrast MR angiography using ultrasound gating and comparison with Doppler ultrasound measurements. Eur Radiol 2019; 29 (08) 4169-4176
  • 63 Kording F. et al. Doppler Ultrasound Triggering for Cardiovascular MRI at 3T in a Healthy Volunteer Study. Magn Reson Med Sci 2017; 16 (02) 98-108
  • 64 Kording F. et al. Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating. J Cardiovasc Magn Reson 2018; 20 (01) 17
  • 65 Tavares de Sousa M. et al. Dynamic fetal cardiac magnetic resonance imaging in four-chamber view using Doppler ultrasound gating in normal fetal heart and in congenital heart disease: comparison with fetal echocardiography. Ultrasound Obstet Gynecol 2019; 53 (05) 669-675
  • 66 Salehi D. et al. Utility of Fetal Cardiovascular Magnetic Resonance for Prenatal Diagnosis of Complex Congenital Heart Defects. JAMA Netw Open 2021; 4 (03) e213538
  • 67 Tavares de Sousa M. et al. Fetal dynamic magnetic resonance imaging using Doppler ultrasound gating for the assessment of the aortic isthmus: A feasibility study. Acta Obstet Gynecol Scand 2020; 100 DOI: 10.1111/aogs.13957.
  • 68 Salehi D. et al. Quantification of blood flow in the fetus with cardiovascular magnetic resonance imaging using Doppler ultrasound gating: validation against metric optimized gating. J Cardiovasc Magn Reson 2019; 21 (01) 74
  • 69 van Amerom JFP. et al. Fetal whole-heart 4D imaging using motion-corrected multi-planar real-time MRI. Magn Reson Med 2019; 82 (03) 1055-1072
  • 70 Lloyd DFA. et al. Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study. Lancet 2019; 393: 1619-1627
  • 71 Victoria T. et al Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience). Pediatr Radiol 2014; 44 (04) 376-386 ; quiz 373–375
  • 72 Reeder SB. et al. Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 2005; 54 (03) 748-754
  • 73 Sodickson DK. et al. Rapid volumetric MRI using parallel imaging with order-of-magnitude accelerations and a 32-element RF coil array: feasibility and implications. Acad Radiol 2005; 12 (05) 626-635
  • 74 Gutberlet M. et al. Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D CINE magnetic resonance imaging: comparison of 1.5 T vs. 3.0 T. Eur Radiol 2005; 15 (08) 1586-1597
  • 75 Gutberlet M. et al. Comparison of different cardiac MRI sequences at 1.5 T/3.0 T with respect to signal-to-noise and contrast-to-noise ratios – initial experience. Rofo 2004; 176 (06) 801-808
  • 76 Healthineers S. Compressed Sensing – Beyond Speed.