Synlett 2022; 33(14): 1399-1404
DOI: 10.1055/a-1797-0386
cluster
Organic Chemistry in Thailand

Direct Synthesis of Coumarin Derivatives from Alkynoic Esters via Dual Organocatalysis

Peerawat Saejong
,
Siriphong Somprasong
,
Chaiwat Rujirasereesakul
,
This research was supported by Mahidol University (Basic Research Fund: fiscal year 2022, Grant Number BRF1-053/2565). P.S. and C.R. are grateful for the financial support through a scholarship from the Development and Promotion of Science and Technology Talents Project (DPST) and the Institute for the Promotion of Teaching Science and Technology (IPST). Support from the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Ministry of Higher Education, Science, Research and Innovation, Thailand is gratefully acknowledged.


Abstract

An efficient synthetic method for coumarin derivatives was developed using a dual organocatalytic reaction. A combination of p-toluenesulfonic acid monohydrate and piperidine was found to efficiently catalyze the cyclization between salicylaldehydes and alkynoic esters to give various coumarin derivatives in good yield and high selectivity. Mechanistic and kinetic data suggested that the conjugate addition between piperidine and alkynoic esters played a crucial role in the reaction mechanism.

Supporting Information



Publication History

Received: 14 February 2022

Accepted after revision: 14 March 2022

Accepted Manuscript online:
14 March 2022

Article published online:
01 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Anastas PT. Chem. Rev. 2007; 107: 2167
  • 2 Noyori R. Chem. Commun. 2005; 1807
  • 3 List B. Chem. Rev. 2007; 107: 5413
  • 4 MacMillan DW. C. Nature 2008; 455: 304
  • 5 Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
  • 6 Basterretxea A, Jehanno C, Mecerreyes D, Sardon H. ACS Macro Lett. 2019; 8: 1055
  • 7 Huang Y, Walji AM, Larsen CH, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 15051
  • 8 Lin H, Tan Y, Liu W.-J, Zhang Z.-C, Sun X.-W, Lin G.-Q. Chem. Commun. 2013; 38: 4024
  • 9 Sun Q.-S, Zhu H, Lin H, Tian Y, Sun X.-W, Sun X. Tetrahedron Lett. 2016; 57: 5768
  • 10 Somprasong S, Prasitwatcharakorn W, Luanphaisarnnont T. Tetrahedron Lett. 2020; 61: 152402
  • 11 Raj MK, Balachandran C, Duraipandiyan V, Agastian P, Ignacimuthu S. J. Ethnopharmacol. 2012; 140: 161
  • 12 Kong Y, Fu Y.-J, Zu Y.-G, Chang F.-R, Chen Y.-H, Liu X.-L, Steltend J, Schiebele H.-M. Food Chem. 2010; 121: 1150
  • 13 Thakur A, Singla R, Jaitak V. Eur. J. Med. Chem. 2015; 28: 476
  • 14 Kadhum AA. H, Al-Amiery AA, Musa AY, Mohamad AB. Int. J. Mol. Sci. 2011; 12: 5747
  • 15 Zembower DE, Liao S, Flavin MT, Xu ZQ, Stup TL, Buckheit RW, Khilevich A, Mar AA, Sheinkman AK. J. Med. Chem. 1997; 40: 1005
  • 16 Xu ZQ, Barrow WW, Suling WJ, Westbrook L, Barrow E, Lin Y.-M, Flavin MT. Bioorg. Med. Chem. 2004; 12: 1199
  • 17 Jameel E, Umar T, Kumar J, Hoda N. Chem. Biol. Drug Des. 2016; 87: 21
  • 18 Kontogiorgis C, Detsi A, Hadjipavlou-Litina D. Expert. Opin. Ther. Pat. 2012; 22: 437
  • 19 Kostova I. Curr. Med. Chem.: Anti-Cancer Agents 2005; 5: 29
  • 20 Wang Y.-B, Luo H.-Z, Wang C.-Y, Guo Z.-Q, Zhu W.-H. J. Photochem. Photobiol., A 2021; 414: 113270
  • 21 Walter ER. H, Ge Y, Mason JC, Boyle JJ, Long NJ. J. Am. Chem. Soc. 2021; 143: 6460
  • 22 Jung H, Han J, Pradhan T, Kim S, Lee S, Sessler J, Kim T, Kang C, Kim J. Biomaterials 2012; 33: 945
  • 23 Sethna SM, Shah NM. Chem. Rev. 1945; 36: 1
  • 24 Gaudino EC, Tagliapiertra S, Martina K, Palmisano G, Cravotto G. RSC Adv. 2016; 6: 46394
  • 25 Vekariya RH, Patel HD. Synth. Commun. 2014; 44: 2756
  • 26 Molnar M, Loncaric M, Kovac M. Curr. Org. Chem. 2020; 24: 4
  • 27 Loncaric M, Gaso-Sokac D, Jokic S, Molnar M. Biomolecules 2020; 10: 151
  • 28 Maiti G, Karmakar R, Kayal U, Bhattacharya RN. Tetrahedron 2012; 68: 8817
  • 29 Majumdar KC, Ansary I, Samanta S, Roy B. Synlett 2011; 694
  • 30 Murugavel G, Punniyamurthy T. J. Org. Chem. 2015; 80: 6291
  • 31 Cai H, Xia L, Lee Y, Shim J, Kim S. Eur. J. Org. Chem. 2015; 5212
  • 32 Deng Z.-X, Zheng Y, Xie Z.-Z, Gao Y.-H, Xiao J.-A, Xie S.-Q, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2020; 22: 488
  • 33 Matsuya Y, Hayashi K, Nemoto H. Chem. Eur. J. 2005; 11: 5408
  • 34 Majumdar KC, Samanta S, Ansary I, Roy B. RSC Adv. 2012; 2: 2137
  • 35 Kiattisewee C, Kaidad A, Jiarpinitnun C, Luanphaisarnnont T. Monatsh. Chem. 2018; 149: 1059
  • 36 General Procedure for the Preparation of Representative Compound 3-Acetyl-2H-chromen-2-one (3a) To a solution of salicylaldehyde (1a, 0.5 mmol, 1.0 equiv) and p-toluenesulfonic acid monohydrate (0.05 mmol, 0.1 equiv) in acetonitrile (1.0 mL) was added ethyl 2-butynoate (2b, 0.6 mmol, 1.2 equiv) and piperidine (0.1 mmol, 0.2 equiv). The reaction was stirred at 75 °C for 24 h. The reaction mixture was extracted with EtOAc, washed with brine, and dried over anhydrous Na2SO4. The solvent was removed in vacuo. The crude product was purified by flash column chromatography with ethyl acetate/hexane (1:5) as eluent to give the desired product. 3-Acetyl-2H-chromen-2-one (3a) Pale yellow solid; yield: 65.8 mg (70%). 1H NMR (400 MHz, CDCl3): δ = 8.44 (s, 1 H), 7.59 (m, 2 H), 7.30 (m, 2 H), 2.66 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 195.5, 159.3, 155.3, 147.5, 134.4, 130.3, 125.0, 124.5, 118.3, 116.7, 30.6 ppm.