Synthesis, Table of Contents Synthesis 2022; 54(22): 4907-4916DOI: 10.1055/a-1859-8012 feature Palladium-Catalyzed Ligand-Free ortho-Deuteration of Aromatic Carboxylic Acids with D2O Ziyin Zhang‡ a School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. of China b School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. of China , Zhi-Jiang Jiang ‡ a School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. of China , Yiwei Cao a School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. of China , Jia Chen∗ a School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. of China c Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. of China , Zhanghua Gao a School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. of China› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract A ligand-free, palladium-catalyzed ortho-deuteration of aromatic carboxylic acids was developed using D2O as the deuterium source. Compared to their meta-substituted analogues, an unusually lower reactivity in para- and ortho-substituted benzoic acids toward hydrogen isotope exchange was observed. Further investigation revealed that the reaction temperature is a critical parameter for the reactivity, and the modified conditions can afford deuterated products with good to excellent deuterium incorporation. Key words Key wordsbenzoic acids - heavy water - deuteration - hydrogen isotope exchange - palladium - ligand-free Full Text References References 1a Yang J. Deuterium: Discovery and Applications in Organic Chemistry. Elsevier; Amsterdam: 2016 1b Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 3022 1c Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 1758 1d Gant TG. J. Med. Chem. 2014; 57: 3595 1e Pirali T, Serafini M, Cargnin S, Genazzani AA. J. Med. Chem. 2019; 62: 5276 2a Yasuda M, Takeshita N, Shigeto S. Sci. Rep. 2021; 11: 1279 2b Polvoy I, Qin H, Flavell RR, Gordon J, Viswanath P, Sriram R, Ohliger MA, Wilson DM. Metabolites 2021; 11: 570 2c Hamuro Y. J. Am. Soc. Mass Spectrom. 2021; 32: 133 3a Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066 3b Truong PT, Miller SG, McLaughlin Sta Maria EJ, Bowring MA. Chem. Eur. J. 2021; 27: 14800 4a Tong CC, Hwang KC. J. Phys. Chem. C 2007; 111: 3490 4b Wang P, Wang F.-F, Chen Y, Niu Q, Lu L, Wang H.-M, Gao X.-C, Wei B, Wu H.-W, Cai X, Zou D.-C. J. Mater. Chem. C 2013; 1: 4821 4c Bae HJ, Kim JS, Yakubovich A, Jeong J, Park S, Chwae J, Ishibe S, Jung Y, Rai VK, Son W.-J, Kim S, Choi H, Baik M.-H. Adv. Opt. Mater. 2021; 9: 2100630 4d Yuan M, Ma F, Dai X, Chen L, Zhai F, He L, Zhang M, Chen J, Shu J, Wang X, Wang X, Zhang Y, Fu X, Li Z, Guo C, Chen L, Chai Z, Wang S. Angew. Chem. Int. Ed. 2021; 60: 21250 5a Heck CJ. S, Seneviratne HK, Bumpus NN. J. Med. Chem. 2020; 63: 6561 5b Wang T, Zhu X.-H, Li H, Zhang Y, Zhu W, Wiesner HM, Chen W. Magn. Reson. Med. 2021; 86: 2899 6a Sajiki H, Ito N, Esaki H, Maesawa T, Maegawa T, Hirota K. Tetrahedron Lett. 2005; 46: 6995 6b Sawama Y, Nakano A, Matsuda T, Kawajiri T, Yamada T, Sajiki H. Org. Process Res. Dev. 2019; 23: 648 6c Bijani S, Jain V, Padmanabhan D, Pandey B, Shah A. Tetrahedron Lett. 2015; 56: 1211 6d Burhop A, Prohaska R, Weck R, Atzrodt J, Derdau V. J. Labelled Compd. Radiopharm. 2017; 60: 343 7a Lockley WJ. S. Tetrahedron Lett. 1982; 23: 3819 7b Lockley WJ. S. J. Labelled Compd. Radiopharm. 1984; 21: 45 8a Ma S, Villa G, Thuy-Boun PS, Homs A, Yu JQ. Angew. Chem. Int. Ed. 2014; 53: 734 8b Uttry A, Mal S, van Gemmeren M. J. Am. Chem. Soc. 2021; 143: 10895 8c Müller V, Weck R, Derdau V, Ackermann L. ChemCatChem 2020; 12: 100 8d Garreau AL, Zhou H, Young MC. Org. Lett. 2019; 21: 7044 9a Pu F, Liu Z.-W, Zhang L.-Y, Fan J, Shi X.-Y. ChemCatChem 2019; 11: 4116 9b Sun R, Yang X, Li Q, Xu K, Tang J, Zheng X, Yuan M, Fu H, Li R, Chen H. Org. Lett. 2019; 21: 9425 9c Zhang M, Zhang H.-J, Han T, Ruan W, Wen T.-B. J. Org. Chem. 2015; 80: 620 9d Han W.-J, Pu F, Li C.-J, Liu Z.-W, Fan J, Shi X.-Y. Adv. Synth. Catal. 2018; 360: 1358 10 Kong J, Jiang Z.-J, Xu J, Li Y, Cao H, Ding Y, Tang B, Chen J, Gao Z. J. Org. Chem. 2021; 86: 13350 11a Kopf S, Ye F, Neumann H, Beller M. Chem. Eur. J. 2021; 27: 9768 11b Kopf S, Neumann H, Beller M. Chem. Commun. 2021; 57: 1137 12 The replacement of CF3COOAg by CF3COOK in the experiment with benzoic acid led to a dramatic diminishing of deuteration, indicating the importance of the silver salt in this exchange. 13 The elevated temperature had not been tested in the initial optimization due to safety concerns. Special precautions should be taken for conducting reactions in glassware at such a high temperature! 14 Yuan S, Yu B, Liu HM. Eur. J. Med. Chem. 2020; 205: 112667 15 Osako T, Kaiser R, Torii K, Uozumi Y. Synlett 2019; 30: 961 16 Ichikawa Y, Hiramatsu M, Mita Y, Makishima M, Matsumoto Y, Masumoto Y, Muranaka A, Uchiyama M, Hashimoto Y, Ishikawa M. Org. Biomol. Chem. 2021; 19: 446 17 Zheng K, Yan X, Zhang G, Yan X, Li X, Xu X. Synlett 2020; 31: 272 18 Kresse H, Lüche KH, Deutscher HJ. Z. Chem. 1976; 16: 55 19 Sang D, Yue H, Fu Y, Tian J. J. Org. Chem. 2021; 86: 4254 20 Sawant S, Aravinda Kumar K, Venkateswarlu V, Vishwakarma R. Synthesis 2015; 47: 3161 21 Cai M, You S, Zhang R. Synthesis 2021; 53: 1962 22 Kalmode HP, Vadagaonkar KS, Shinde SL, Chaskar AC. J. Org. Chem. 2017; 82: 3781 23 Hurst TE, Deichert JA, Kapeniak L, Lee R, Harris J, Jessop PG, Snieckus V. Org. Lett. 2019; 21: 3882 24 Zhang Z, Zhang G, Xiong N, Xue T, Zhang J, Bai L, Guo Q, Zeng R. Org. Lett. 2021; 23: 2915 25 Nejad MJ, Salamatmanesh A, Heydari A. J. Organomet. Chem. 2020; 911: 121128 26 Tallur PN, Megadi VB, Ninnekar HZ. Biodegradation 2008; 19: 77 27 Li N, Gui Y, Chu M, You M, Qiu X, Liu H, Wang S, Deng M, Ji B. Org. Lett. 2021; 23: 8460 28 Sarkar N, Parkin S, Huckaba AJ. Cryst. Growth Des. 2021; 21: 4337 29 Vishal K, Fahlman BD, Sasidhar BS, Patil SA, Patil SA. Catal. Lett. 2017; 147: 900 30 Gu J, Wan Y, Ma H, Zhu H, Bu H, Zhou Y, Zhang W, Wu Z.-G, Li Y. Tetrahedron 2021; 93: 132298 31 Zheng R, Zhou Q, Gu H, Jiang H, Wu J, Jin Z, Han D, Dai G, Chen R. Tetrahedron Lett. 2014; 55: 5671 32 Liu KM, Zhang R, Duan XF. Org. Biomol. Chem. 2016; 14: 1593 33 Rizzo G, Albano G, Lo Presti M, Milella A, Omenetto FG, Farinola GM. Eur. J. Org. Chem. 2020; 6992 34 Alavi GS. A, Nasseri MA, Kazemnejadi M, Allahresani A, HussainZadeh M. New J. Chem. 2021; 45: 7741 35 Jones BA, Bradshaw JS, Nishioka M, Lee ML. J. Org. Chem. 1984; 49: 4947 Supplementary Material Supplementary Material Supporting Information