Synthesis 2022; 54(22): 4907-4916
DOI: 10.1055/a-1859-8012
feature

Palladium-Catalyzed Ligand-Free ortho-Deuteration of Aromatic Carboxylic Acids with D2O

Ziyin Zhang
a   School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. of China
b   School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. of China
,
a   School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. of China
,
Yiwei Cao
a   School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. of China
,
Jia Chen
a   School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. of China
c   Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. of China
,
a   School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. of China
› Author Affiliations
This work was supported by the Natural Science Foundation of Ningbo (Grant No. 202003N4310) and the Ningbo Municipal Bureau of Science and Technology under the CM2025 Programme (Grant No. 2020Z092). Z.-J.J. thanks the Start-up Foundation from NingboTech University (No. 20191114).


Abstract

A ligand-free, palladium-catalyzed ortho-deuteration of aromatic carboxylic acids was developed using D2O as the deuterium source. Compared to their meta-substituted analogues, an unusually lower reactivity in para- and ortho-substituted benzoic acids toward hydrogen isotope exchange was observed. Further investigation revealed that the reaction temperature is a critical parameter for the reactivity, and the modified conditions can afford deuterated products with good to excellent deuterium incorporation.

Supporting Information



Publication History

Received: 30 March 2022

Accepted after revision: 23 May 2022

Accepted Manuscript online:
23 May 2022

Article published online:
23 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Yang J. Deuterium: Discovery and Applications in Organic Chemistry. Elsevier; Amsterdam: 2016
    • 1b Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 3022
    • 1c Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 1758
    • 1d Gant TG. J. Med. Chem. 2014; 57: 3595
    • 1e Pirali T, Serafini M, Cargnin S, Genazzani AA. J. Med. Chem. 2019; 62: 5276
    • 2a Yasuda M, Takeshita N, Shigeto S. Sci. Rep. 2021; 11: 1279
    • 2b Polvoy I, Qin H, Flavell RR, Gordon J, Viswanath P, Sriram R, Ohliger MA, Wilson DM. Metabolites 2021; 11: 570
    • 2c Hamuro Y. J. Am. Soc. Mass Spectrom. 2021; 32: 133
    • 3a Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
    • 3b Truong PT, Miller SG, McLaughlin Sta Maria EJ, Bowring MA. Chem. Eur. J. 2021; 27: 14800
    • 4a Tong CC, Hwang KC. J. Phys. Chem. C 2007; 111: 3490
    • 4b Wang P, Wang F.-F, Chen Y, Niu Q, Lu L, Wang H.-M, Gao X.-C, Wei B, Wu H.-W, Cai X, Zou D.-C. J. Mater. Chem. C 2013; 1: 4821
    • 4c Bae HJ, Kim JS, Yakubovich A, Jeong J, Park S, Chwae J, Ishibe S, Jung Y, Rai VK, Son W.-J, Kim S, Choi H, Baik M.-H. Adv. Opt. Mater. 2021; 9: 2100630
    • 4d Yuan M, Ma F, Dai X, Chen L, Zhai F, He L, Zhang M, Chen J, Shu J, Wang X, Wang X, Zhang Y, Fu X, Li Z, Guo C, Chen L, Chai Z, Wang S. Angew. Chem. Int. Ed. 2021; 60: 21250
    • 5a Heck CJ. S, Seneviratne HK, Bumpus NN. J. Med. Chem. 2020; 63: 6561
    • 5b Wang T, Zhu X.-H, Li H, Zhang Y, Zhu W, Wiesner HM, Chen W. Magn. Reson. Med. 2021; 86: 2899
    • 6a Sajiki H, Ito N, Esaki H, Maesawa T, Maegawa T, Hirota K. Tetrahedron Lett. 2005; 46: 6995
    • 6b Sawama Y, Nakano A, Matsuda T, Kawajiri T, Yamada T, Sajiki H. Org. Process Res. Dev. 2019; 23: 648
    • 6c Bijani S, Jain V, Padmanabhan D, Pandey B, Shah A. Tetrahedron Lett. 2015; 56: 1211
    • 6d Burhop A, Prohaska R, Weck R, Atzrodt J, Derdau V. J. Labelled Compd. Radiopharm. 2017; 60: 343
    • 7a Lockley WJ. S. Tetrahedron Lett. 1982; 23: 3819
    • 7b Lockley WJ. S. J. Labelled Compd. Radiopharm. 1984; 21: 45
    • 8a Ma S, Villa G, Thuy-Boun PS, Homs A, Yu JQ. Angew. Chem. Int. Ed. 2014; 53: 734
    • 8b Uttry A, Mal S, van Gemmeren M. J. Am. Chem. Soc. 2021; 143: 10895
    • 8c Müller V, Weck R, Derdau V, Ackermann L. ChemCatChem 2020; 12: 100
    • 8d Garreau AL, Zhou H, Young MC. Org. Lett. 2019; 21: 7044
    • 9a Pu F, Liu Z.-W, Zhang L.-Y, Fan J, Shi X.-Y. ChemCatChem 2019; 11: 4116
    • 9b Sun R, Yang X, Li Q, Xu K, Tang J, Zheng X, Yuan M, Fu H, Li R, Chen H. Org. Lett. 2019; 21: 9425
    • 9c Zhang M, Zhang H.-J, Han T, Ruan W, Wen T.-B. J. Org. Chem. 2015; 80: 620
    • 9d Han W.-J, Pu F, Li C.-J, Liu Z.-W, Fan J, Shi X.-Y. Adv. Synth. Catal. 2018; 360: 1358
  • 10 Kong J, Jiang Z.-J, Xu J, Li Y, Cao H, Ding Y, Tang B, Chen J, Gao Z. J. Org. Chem. 2021; 86: 13350
    • 11a Kopf S, Ye F, Neumann H, Beller M. Chem. Eur. J. 2021; 27: 9768
    • 11b Kopf S, Neumann H, Beller M. Chem. Commun. 2021; 57: 1137
  • 12 The replacement of CF3COOAg by CF3COOK in the experiment with benzoic acid led to a dramatic diminishing of deuteration, indicating the importance of the silver salt in this exchange.
  • 13 The elevated temperature had not been tested in the initial optimization due to safety concerns. Special precautions should be taken for conducting reactions in glassware at such a high temperature!
  • 14 Yuan S, Yu B, Liu HM. Eur. J. Med. Chem. 2020; 205: 112667
  • 15 Osako T, Kaiser R, Torii K, Uozumi Y. Synlett 2019; 30: 961
  • 16 Ichikawa Y, Hiramatsu M, Mita Y, Makishima M, Matsumoto Y, Masumoto Y, Muranaka A, Uchiyama M, Hashimoto Y, Ishikawa M. Org. Biomol. Chem. 2021; 19: 446
  • 17 Zheng K, Yan X, Zhang G, Yan X, Li X, Xu X. Synlett 2020; 31: 272
  • 18 Kresse H, Lüche KH, Deutscher HJ. Z. Chem. 1976; 16: 55
  • 19 Sang D, Yue H, Fu Y, Tian J. J. Org. Chem. 2021; 86: 4254
  • 20 Sawant S, Aravinda Kumar K, Venkateswarlu V, Vishwakarma R. Synthesis 2015; 47: 3161
  • 21 Cai M, You S, Zhang R. Synthesis 2021; 53: 1962
  • 22 Kalmode HP, Vadagaonkar KS, Shinde SL, Chaskar AC. J. Org. Chem. 2017; 82: 3781
  • 23 Hurst TE, Deichert JA, Kapeniak L, Lee R, Harris J, Jessop PG, Snieckus V. Org. Lett. 2019; 21: 3882
  • 24 Zhang Z, Zhang G, Xiong N, Xue T, Zhang J, Bai L, Guo Q, Zeng R. Org. Lett. 2021; 23: 2915
  • 25 Nejad MJ, Salamatmanesh A, Heydari A. J. Organomet. Chem. 2020; 911: 121128
  • 26 Tallur PN, Megadi VB, Ninnekar HZ. Biodegradation 2008; 19: 77
  • 27 Li N, Gui Y, Chu M, You M, Qiu X, Liu H, Wang S, Deng M, Ji B. Org. Lett. 2021; 23: 8460
  • 28 Sarkar N, Parkin S, Huckaba AJ. Cryst. Growth Des. 2021; 21: 4337
  • 29 Vishal K, Fahlman BD, Sasidhar BS, Patil SA, Patil SA. Catal. Lett. 2017; 147: 900
  • 30 Gu J, Wan Y, Ma H, Zhu H, Bu H, Zhou Y, Zhang W, Wu Z.-G, Li Y. Tetrahedron 2021; 93: 132298
  • 31 Zheng R, Zhou Q, Gu H, Jiang H, Wu J, Jin Z, Han D, Dai G, Chen R. Tetrahedron Lett. 2014; 55: 5671
  • 32 Liu KM, Zhang R, Duan XF. Org. Biomol. Chem. 2016; 14: 1593
  • 33 Rizzo G, Albano G, Lo Presti M, Milella A, Omenetto FG, Farinola GM. Eur. J. Org. Chem. 2020; 6992
  • 34 Alavi GS. A, Nasseri MA, Kazemnejadi M, Allahresani A, HussainZadeh M. New J. Chem. 2021; 45: 7741
  • 35 Jones BA, Bradshaw JS, Nishioka M, Lee ML. J. Org. Chem. 1984; 49: 4947