RSS-Feed abonnieren
DOI: 10.1055/a-1913-5012
Hämodynamisches Management: Katecholamine und andere Vasopressoren/Inotropika

Der Beitrag diskutiert die Grundlagen zur hämodynamischen Überwachung und Behandlung bei verschiedenen intensivmedizinischen Erkrankungen, insbesondere beim kardiogenen und septischen Schock. Die genaue hämodynamische Phänotypisierung der Patienten kann bei der medikamentösen Schocktherapie hilfreich sein. Für die Diagnose ist kein invasives hämodynamisches Monitoring zwingend notwendig. Dennoch bleiben das PiCCO- und das Pulmonalarterienkatheter-Verfahren weiterhin Standard in der hämodynamischen Überwachung.
-
Bei der Therapie mit Katecholaminen gilt: so wenig wie möglich, so viel wie nötig.
-
Anstelle einer Erhöhung der Noradrenalin-Dosis kann Vasopressin hinzugefügt werden.
-
Für manche Diagnosestellungen, wie z. B. beim kardiogenen Schock, ist laut S3-Leitlinie kein invasives hämodynamisches Monitoring notwendig!
-
In geeigneten Fällen kann ein erweitertes hämodynamisches Monitoring hilfreich sein.
-
Vasodilatatoren sollten sehr vorsichtig eingesetzt werden. Hypotonien sollten vermieden werden.
-
Noradrenalin wird Adrenalin gegenüber als Vasopressor bevorzugt.
-
Dopamin wird nicht mehr empfohlen.
-
Dobutamin ist das am meisten verwendete Inotropikum.
-
Bei ausgewählten Patienten kann die additive Gabe von Levosimendan oder PDE-III-Inhibitoren hilfreich sein.
Schlüsselwörter
piCCO (Pulse Contour Cardiac Output) - Katecholamine - Vasopressoren - Inotropika - SchockbehandlungPublikationsverlauf
Artikel online veröffentlicht:
10. Oktober 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Kastrup M, Braun J, Kaffarnik M. et al. Catecholamine dosing and survival in adult intensive care unit patients. World J Surg 2013; 37: 766-773
- 2 Goldberg LI. Recent advances in the pharmacology of catecholamines. Intensive Care Med 1977; 3: 233-236
- 3 Scheeren TWL, Bakker J, Kaufmann T. et al. Current use of inotropes in circulatory shock. Ann Intensive Care 2021; 11: 21
- 4 Bohula EA, Katz JN, van Diepen S. et al. Demographics, care patterns, and outcomes of patients admitted to cardiac intensive care units: the critical care cardiology trials network prospective North American multicenter registry of cardiac critical illness. JAMA Cardiol 2019; 4: 928-935
- 5 Bauer M, Groesdonk HV, Preissing F. et al. Sterblichkeit bei Sepsis und septischem Schock in Deutschland. Ergebnisse eines systematischen Reviews mit Metaanalyse. Anaesthesist 2021; 70: 673-680
- 6 Singer M, Deutschman CS, Seymour CW. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315: 801-810
- 7 McDonagh TA, Metra M, Adamo M. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42: 3599-3726
- 8 Werdan K, Ferrari MW, Prondzinsky R. et al. Infarktbedingter kardiogener Schock. Herz 2022; 47: 85-100
- 9 Deutsche Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e.V. (federführend). Deutsch-österreichische S3-Leitlinie Infarktbedingter kardiogener Schock – Diagnose, Monitoring und Therapie. AWMF-Leitlinien-Register Nr. 019/013. Zugriff am 06. Juli 2023 unter: https://register.awmf.org/assets/guidelines/019–013l_S3_Infarktbedingter_kardiogener_Schock_2019–11.pdf
- 10 Thiele H, Ohman EM, de Waha-Thiele S. et al. Management of cardiogenic shock complicating myocardial infarction: an update 2019. Eur Heart J 2019; 40: 2671-2683
- 11 Naidu SS, Baran DA, Jentzer JC. et al. SCAI SHOCK stage classification expert consensus update: a review and incorporation of validation studies: this statement was endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association (AHA), European Society of Cardiology (ESC) Association for Acute Cardiovascular Care (ACVC), International Society for Heart and Lung Transplantation (ISHLT), Society of Critical Care Medicine (SCCM), and Society of Thoracic Surgeons (STS) in December 2021. J Am Coll Cardiol 2022; 79: 933-946
- 12 Kanwar MK, Blumer V, Zhang Y. et al. Pulmonary artery catheter use and risk of in-hospital death in heart failure cardiogenic shock. J Card Fail 2023;
- 13 Gassanov N, Caglayan E, Nia A. et al. Hämodynamisches Monitoring auf der Intensivstation: Pulmonalarterienkatheter versus PiCCO. Dtsch Med Wochenschr 2011; 136: 376-380
- 14 Mueller HS, Chatterjee K, Davis KB. et al. ACC expert consensus document. Present use of bedside right heart catheterization in patients with cardiac disease. American College of Cardiology. J Am Coll Cardiol 1998; 32: 840-864
- 15 Friesecke S, Heinrich A, Abel P. et al. Comparison of pulmonary artery and aortic transpulmonary thermodilution for monitoring of cardiac output in patients with severe heart failure: validation of a novel method. Crit Care Med 2009; 37: 119-123
- 16 Della Rocca G, Costa MG, Pompei L. et al. Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. Br J Anaesth 2002; 88: 350-356
- 17 Sakka SG, Reinhart K, Meier-Hellmann A. Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 1999; 25: 843-846
- 18 Maitland K, Kiguli S, Opoka RO. et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med 2011; 364: 2483-2495
- 19 Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 2013; 41: 1774-1781
- 20 Connors AF, Speroff T, Dawson NV. et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 1996; 276: 889-897
- 21 Richard C, Warszawski J, Anguel N. et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2003; 290: 2713-2720
- 22 Sandham JD, Hull RD, Brant RF. et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 2003; 348: 5-14
- 23 Shah MR, Hasselblad V, Stevenson LW. et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA 2005; 294: 1664-1670
- 24 Steltzer H, Krenn CG, Krafft P. et al. The pulmonary artery catheter: current status in clinical practice. Acta Anaesthesiol Scand Suppl 1997; 111: 84-87
- 25 Stubbe H, Schmidt C, Hinder F. Invasives Kreislaufmonitoring – Vier Methoden im Vegleich. Anästh Intensivmed Notfallmed Schmerzther 2006; 41: 550-555
- 26 Uchino S, Bellomo R, Morimatsu H. et al. Pulmonary artery catheter versus pulse contour analysis: a prospective epidemiological study. Crit Care 2006; 10: R174
- 27 Noritomi DT, Vieira ML, Mohovic T. et al. Echocardiography for hemodynamic evaluation in the intensive care unit. Shock 2010; 34 (Suppl. 01) 59-62
- 28 Abraham J, Blumer V, Burkhoff D. et al. Heart failure-related cardiogenic shock: pathophysiology, evaluation and management considerations: review of heart failure-related cardiogenic shock. J Card Fail 2021; 27: 1126-1140
- 29 van Diepen S, Katz JN, Albert NM. et al. Contemporary management of cardiogenic shock: a scientific statement from the american heart association. Circulation 2017; 136: e232-e268
- 30 Janssens U. Central venous pressure not appropriate to guide volume administration in patients with high-risk pulmonary embolism. Intensive Care Med 2023;
- 31 Pickkers P, Dormans TP, Russel FG. et al. Direct vascular effects of furosemide in humans. Circulation 1997; 96: 1847-1852
- 32 Johnson W, Omland T, Hall C. et al. Neurohormonal activation rapidly decreases after intravenous therapy with diuretics and vasodilators for class IV heart failure. J Am Coll Cardiol 2002; 39: 1623-1629
- 33 Cotter G, Metzkor E, Kaluski E. et al. Randomised trial of high-dose isosorbide dinitrate plus low-dose furosemide versus high-dose furosemide plus low-dose isosorbide dinitrate in severe pulmonary oedema. Lancet 1998; 351: 389-393
- 34 Boyd JH, Sirounis D. Assessment of adequacy of volume resuscitation. Curr Opin Crit Care 2016; 22: 424-427
- 35 Mebazaa A, Combes A, van Diepen S. et al. Management of cardiogenic shock complicating myocardial infarction. Intensive Care Med 2018; 44: 760-773
- 36 Basir MB, Lemor A, Gorgis S. et al. Vasopressors independently associated with mortality in acute myocardial infarction and cardiogenic shock. Catheter Cardiovasc Interv 2022; 99: 650-657
- 37 De Backer D, Biston P, Devriendt J. et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 2010; 362: 779-789
- 38 van Diepen S. Norepinephrine as a first-line inopressor in cardiogenic shock: oversimplification or best practice?. J Am Coll Cardiol 2018; 72: 183-186
- 39 Lu X, Wang X, Gao Y. et al. Norepinephrine use in cardiogenic shock patients is associated with increased 30 day mortality. ESC Heart Fail 2022; 9: 1875-1883
- 40 De Backer D, Arias Ortiz J, Levy B. The medical treatment of cardiogenic shock: cardiovascular drugs. Curr Opin Crit Care 2021; 27: 426-432
- 41 Levy B, Clere-Jehl R, Legras A. et al. Epinephrine versus norepinephrine for cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 2018; 72: 173-182
- 42 Rhodes A, Evans LE, Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 2017; 43: 304-377
- 43 Evans L, Rhodes A, Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med 2021; 49: e1063-e1143
- 44 Soar J, Bottiger BW, Carli P. et al. European Resuscitation Council Guidelines 2021: adult advanced life support. Resuscitation 2021; 161: 115-151
- 45 Asfar P, Radermacher P. Vasopressin and ischaemic heart disease: more than coronary vasoconstriction?. Crit Care 2009; 13: 169
- 46 Jolly S, Newton G, Horlick E. et al. Effect of vasopressin on hemodynamics in patients with refractory cardiogenic shock complicating acute myocardial infarction. Am J Cardiol 2005; 96: 1617-1620
- 47 Sugawara Y, Mizuno Y, Oku S. et al. Effects of vasopressin during a pulmonary hypertensive crisis induced by acute hypoxia in a rat model of pulmonary hypertension. Br J Anaesth 2019; 122: 437-447
- 48 Overgaard CB, Dzavik V. Inotropes and vasopressors: review of physiology and clinical use in cardiovascular disease. Circulation 2008; 118: 1047-1056
- 49 Belujon P, Grace AA. Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proc Biol Sci 2015; 282
- 50 Rui Q, Jiang Y, Chen M. et al. Dopamine versus norepinephrine in the treatment of cardiogenic shock: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2017; 96: e8402
- 51 Chioncel O, Parissis J, Mebazaa A. et al. Epidemiology, pathophysiology and contemporary management of cardiogenic shock – a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2020; 22: 1315-1341
- 52 Campbell DJ. Do intravenous and subcutaneous angiotensin II increase blood pressure by different mechanisms?. Clin Exp Pharmacol Physiol 2013; 40: 560-570
- 53 Bussard RL, Busse LW. Angiotensin II: a new therapeutic option for vasodilatory shock. Ther Clin Risk Manag 2018; 14: 1287-1298
- 54 Singh A, Laribi S, Teerlink JR. et al. Agents with vasodilator properties in acute heart failure. Eur Heart J 2017; 38: 317-325
- 55 Kirov MY, Evgenov OV, Evgenov NV. et al. Infusion of methylene blue in human septic shock: a pilot, randomized, controlled study. Crit Care Med 2001; 29: 1860-1867
- 56 Donati A, Conti G, Loggi S. et al. Does methylene blue administration to septic shock patients affect vascular permeability and blood volume?. Crit Care Med 2002; 30: 2271-2277
- 57 Juffermans NP, Vervloet MG, Daemen-Gubbels CR. et al. A dose-finding study of methylene blue to inhibit nitric oxide actions in the hemodynamics of human septic shock. Nitric Oxide 2010; 22: 275-280
- 58 Uhlig K, Efremov L, Tongers J. et al. Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev 2020; (11) CD009669
- 59 Heidenreich PA, Bozkurt B, Aguilar D. et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 2022; 145: e895-e1032
- 60 Gao F, Zhang Y. Inotrope use and intensive care unit mortality in patients with cardiogenic shock: an analysis of a large electronic intensive care unit database. Front Cardiovasc Med 2021; 8: 696138
- 61 Karami M, Hemradj VV, Ouweneel DM. et al. Vasopressors and inotropes in acute myocardial infarction related cardiogenic shock: a systematic review and meta-analysis. J Clin Med 2020; 9: 2051
- 62 Tarvasmäki T, Lassus J, Varpula M. et al. Current real-life use of vasopressors and inotropes in cardiogenic shock – adrenaline use is associated with excess organ injury and mortality. Crit Care 2016; 20: 208
- 63 Ponikowski P, Voors AA, Anker SD. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016; 18: 891-975
- 64 Sakr Y, Reinhart K, Vincent JL. et al. Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study. Crit Care Med 2006; 34: 589-597
- 65 Mathew R, Di Santo P, Jung RG. et al. Milrinone as compared with dobutamine in the treatment of cardiogenic shock. N Engl J Med 2021; 385: 516-525
- 66 Stratton L, Berlin DA, Arbo JE. Vasopressors and inotropes in sepsis. Emerg Med Clin North Am 2017; 35: 75-91
- 67 Pollard S, Edwin SB, Alaniz C. Vasopressor and inotropic management of patients with septic shock. P T 2015; 40: 438-450
- 68 Leopold V, Gayat E, Pirracchio R. et al. Epinephrine and short-term survival in cardiogenic shock: an individual data meta-analysis of 2583 patients. Intensive Care Med 2018; 44: 847-856
- 69 Levy B, Buzon J, Kimmoun A. Inotropes and vasopressors use in cardiogenic shock: when, which and how much?. Curr Opin Crit Care 2019; 25: 384-390
- 70 Rokyta jr R, Pechman V. The effects of Levosimendan on global haemodynamics in patients with cardiogenic shock. Neuro Endocrinol Lett 2006; 27: 121-127
- 71 Dominguez-Rodriguez A, Samimi-Fard S, Garcia-Gonzalez MJ. et al. Effects of levosimendan versus dobutamine on left ventricular diastolic function in patients with cardiogenic shock after primary angioplasty. Int J Cardiol 2008; 128: 214-217
- 72 Fuhrmann JT, Schmeisser A, Schulze MR. et al. Levosimendan is superior to enoximone in refractory cardiogenic shock complicating acute myocardial infarction. Crit Care Med 2008; 36: 2257-2266
- 73 Samimi-Fard S, Garcia-Gonzalez MJ, Dominguez-Rodriguez A. et al. Effects of levosimendan versus dobutamine on long-term survival of patients with cardiogenic shock after primary coronary angioplasty. Int J Cardiol 2008; 127: 284-287
- 74 Follath F, Cleland JG, Just H. et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet 2002; 360: 196-202
- 75 De Luca L, Colucci WS, Nieminen MS. et al. Evidence-based use of levosimendan in different clinical settings. Eur Heart J 2006; 27: 1908-1920
- 76 Christoph A, Prondzinsky R, Russ M. et al. Early and sustained haemodynamic improvement with levosimendan compared to intraaortic balloon counterpulsation (IABP) in cardiogenic shock complicating acute myocardial infarction. Acute Card Care 2008; 10: 49-57
- 77 Delle Karth G, Buberl A, Geppert A. et al. Hemodynamic effects of a continuous infusion of levosimendan in critically ill patients with cardiogenic shock requiring catecholamines. Acta Anaesthesiol Scand 2003; 47: 1251-1256
- 78 Werdan K, Buerke M, Geppert A. et al. Infarction-related cardiogenic shock- diagnosis, monitoring and therapy-a German-Austrian S3 Guideline. Dtsch Arztebl Int 2021; 118: 88-95
- 79 Qiu J, Jia L, Hao Y. et al. Efficacy and safety of levosimendan in patients with acute right heart failure: a meta-analysis. Life Sci 2017; 184: 30-36
- 80 Liu DH, Ning YL, Lei YY. et al. Levosimendan versus dobutamine for sepsis-induced cardiac dysfunction: a systematic review and meta-analysis. Sci Rep 2021; 11: 20333
- 81 Ren YS, Li LF, Peng T. et al. The effect of milrinone on mortality in adult patients who underwent CABG surgery: a systematic review of randomized clinical trials with a meta-analysis and trial sequential analysis. BMC Cardiovasc Disord 2020; 20: 328
- 82 Koster G, Bekema HJ, Wetterslev J. et al. Milrinone for cardiac dysfunction in critically ill adult patients: a systematic review of randomised clinical trials with meta-analysis and trial sequential analysis. Intensive Care Med 2016; 42: 1322-1335
- 83 Metra M, Nodari S, D’Aloia A. et al. Beta-blocker therapy influences the hemodynamic response to inotropic agents in patients with heart failure: a randomized comparison of dobutamine and enoximone before and after chronic treatment with metoprolol or carvedilol. J Am Coll Cardiol 2002; 40: 1248-1258
- 84 Gilbert EM, Hershberger RE, Wiechmann RJ. et al. Pharmacologic and hemodynamic effects of combined beta-agonist stimulation and phosphodiesterase inhibition in the failing human heart. Chest 1995; 108: 1524-1532
- 85 Barton P, Garcia J, Kouatli A. et al. Hemodynamic effects of i. v. milrinone lactate in pediatric patients with septic shock. A prospective, double-blinded, randomized, placebo-controlled, interventional study. Chest 1996; 109: 1302-1312
- 86 Ospina-Tascón GA, Calderón-Tapia LE. Inodilators in septic shock: should these be used?. Ann Transl Med 2020; 8: 796
- 87 Kim CH, Fan TH, Kelly PF. et al. Isoform-specific regulation of myocardial Na,K-ATPase alpha-subunit in congestive heart failure. Role of norepinephrine. Circulation 1994; 89: 313-320
- 88 Delmas Ng C, Rossignol P. Effect of early use of levosimendan versus placebo on top of a conventional strategy of inotrope use on a combined morbidity-mortality endpoint in patients with cardiogenic shock (LevoHeartShock). Nancy, France: Central Hospital;
- 89 Rebecca Mathew BH. CAPITAL DOREMI 2: inotrope versus placebo therapy for cardiogenic shock (DOREMI-2). Ottawa: Ottawa Heart Institute Research Corporation;
- 90 Mamas MA, Kwok CS, Kontopantelis E. et al. Relationship between anemia and mortality outcomes in a national acute coronary syndrome cohort: insights from the UK Myocardial Ischemia National Audit Project Registry. J Am Heart Assoc 2016; 5: e003348
- 91 Mahendiran T, Nanchen D, Gencer B. et al. Prognosis of patients with chronic and hospital-acquired anaemia after acute coronary syndromes. J Cardiovasc Transl Res 2020; 13: 618-628
- 92 Lim HS. Cardiogenic shock: failure of oxygen delivery and oxygen utilization. Clin Cardiol 2016; 39: 477-483
- 93 Vlaar AP, Oczkowski S, de Bruin S. et al. Transfusion strategies in non-bleeding critically ill adults: a clinical practice guideline from the European Society of Intensive Care Medicine. Intensive Care Med 2020; 46: 673-696
- 94 Nakamura RE, Vincent JL, Fukushima JT. et al. A liberal strategy of red blood cell transfusion reduces cardiogenic shock in elderly patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 2015; 150: 1314-1320
- 95 Ducrocq G, Gonzalez-Juanatey JR, Puymirat E. et al. Effect of a restrictive vs liberal blood transfusion strategy on major cardiovascular events among patients with acute myocardial infarction and anemia: the REALITY randomized clinical trial. Jama 2021; 325: 552-560
- 96 Nativi-Nicolau J, Selzman CH, Fang JC. et al. Pharmacologic therapies for acute cardiogenic shock. Curr Opin Cardiol 2014; 29: 250-257