Synthesis 2023; 55(03): 400-416
DOI: 10.1055/a-1944-9494
short review

Recent Developments in the Electroreductive Functionalization of Carbon–Halogen Bonds

Kingshuk Mahanty
,
Atreyee Halder
,
Debabrata Maiti
,
S.D.S is grateful for funding from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), India (CRG/2020/006021). Generous support from the University Grants Commission (UGC), India (fellowship to K.M.), the Council of Scientific and Industrial Research (CSIR), India (fellowship to D.M.) and the Indian Institute of Science Education and Research Kolkata (IISER Kolkata) (fellowship to A.H. and infrastructure) is gratefully acknowledged.


Abstract

Electrochemical organic transformations have witnessed significant progress over the past decades owing to their idiosyncratic redox nature. Electrochemistry is globally acknowledged for its sustainability and environmental friendliness, whilst several well-known redox processes are available that do not generate chemical waste or toxic by-products. Apart from this, electrochemistry has adequate potential to steer numerous non-spontaneous reactions, such as cross-coupling, C–C bond cleavage, radical generation, directed C–H functionalization, etc., in a straightforward manner. Beyond electrochemical oxidation reactions, electrochemical reductive transformations have also been enriched in the last few years. Electrochemical reduction can be facilitated by using different strategies, for example, by using a sacrificial electrode or a sacrificial reagent, or can be accomplished in a divided cell. In this short review, different methods for the functionalization of C–halogen bonds, including detailed mechanistic approaches, are discussed.

1 Introduction

2 Different Strategies for Electrochemical Reduction

3 Functionalization of Carbon–Halogen Bonds through Electrochemical Reduction

3.1 E lectroreductive Hydrodehalogenation

3.2 Electroreductive C–C Coupling of Organohalides

3.2.1 Aryl–Aryl C–C Coupling

3.2.2 Aryl–Alkenyl C–C Coupling

3.2.3 Aryl–Alkyl C–C Coupling

3.2.4 Alkyl–Alkenyl C–C Coupling

3.2.5 Alkyl–Alkyl C–C Coupling

3.3 Electroreductive Coupling of Organohalides with Carbonyls (C=O)

3.4 Electroreductive Coupling of Organohalides with Organoboranes

4 Conclusion



Publication History

Received: 15 July 2022

Accepted after revision: 15 September 2022

Accepted Manuscript online:
15 September 2022

Article published online:
21 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Volta A. Philos. Trans. R. Soc. London 1800; 90: 403
    • 3a Paidar M, Fateev V, Bouzek K. Electrochim. Acta 2016; 209: 737
    • 3b Sperry JB, Wright DL. Chem. Soc. Rev. 2006; 35: 605
    • 3c Lund H. J. Electrochem. Soc. 2002; 149: S21
    • 3d Steckhan E. Angew. Chem. Int. Ed. 1986; 25: 683
    • 4a Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
    • 4b Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
    • 4c Steckhan E, Arns T, Heineman WR, Hilt G, Hoormann D, Jörissen J, Kröner L, Lewall B, Pütter H. Chemosphere 2001; 43: 63
    • 4d Steckhan E. Organic Syntheses with Electrochemically Regenerable Redox Systems. In Electrochemistry I. Steckhan E. Topics in Current Chemistry 142; Springer-Verlag; Berlin/Heidelberg: 1987: 1-69
    • 5a Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
    • 5b Wu T, Moeller KD. Angew. Chem. Int. Ed. 2021; 60: 12883
    • 5c Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386
    • 5d Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem. Rev. 2019; 119: 6769
    • 5e Wiebe A, Gieshoff T, Mohle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
    • 5f Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 6a Tay NE. S, Lehnherr D, Rovis T. Chem. Rev. 2022; 122: 2487
    • 6b Saha D, Taily IM, Kumar R, Banerjee P. Chem. Commun. 2021; 57: 2464
    • 6c Yuan Y, Lei A. Nat. Commun. 2020; 11: 802
    • 6d Wang F, Stahl SS. Acc. Chem. Res. 2020; 53: 561
    • 6e Liu J, Lu L, Wood D, Lin S. ACS Cent. Sci. 2020; 6: 1317
    • 6f Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 6g Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
  • 7 Kolbe H. Justus Liebigs Ann. Chem. 1845; 54: 145
  • 8 Tafel J, Hahl H. Ber. Dtsch. Chem. Ges. 1907; 40: 3312
    • 9a Yuan Y, Lei A. Acc. Chem. Res. 2019; 52: 3309
    • 9b Rockl JL, Pollok D, Franke R, Waldvogel SR. Acc. Chem. Res. 2020; 53: 45
  • 10 Xiong P, Xu HC. Acc. Chem. Res. 2019; 52: 3339
  • 11 Liu K, Song C, Lei A. Org. Biomol. Chem. 2018; 16: 2375
  • 12 Ackermann L. Acc. Chem. Res. 2020; 53: 84
    • 13a Little RD, Schwaebe MK. Top. Curr. Chem. 1997; 185: 1-48
    • 13b Nédélec J.-Y, Périchon J, Troupel M. Top. Curr. Chem. 1997; 185: 141-173
    • 14a Marken F, Cresswell AJ, Bull SD. Chem. Rec. 2021; 21: 2585
    • 14b Sbei N, Hardwick T, Ahmed N. ACS Sustainable Chem. Eng. 2021; 9: 6148
  • 15 Gutz C, Selt M, Banziger M, Bucher C, Romelt C, Hecken N, Gallou F, Galvao TR, Waldvogel SR. Chem. Eur. J. 2015; 21: 13878
  • 16 Wu W.-B, Li M.-L, Huang J.-M. Tetrahedron Lett. 2015; 56: 1520
  • 17 Huang B, Guo L, Xia W. Green Chem. 2021; 23: 2095
  • 18 Sun G, Ren S, Zhu X, Huang M, Wan Y. Org. Lett. 2016; 18: 544
  • 19 Kim H, Kim H, Lambert TH, Lin S. J. Am. Chem. Soc. 2020; 142: 2087
  • 20 Cowper NG. W, Chernowsky CP, Williams OP, Wickens ZK. J. Am. Chem. Soc. 2020; 142: 2093
  • 21 Oliveira JL, Le Gall E, Sengmany S, Léonel E, Dubot P, Cénédèse P, Navarro M. Electrochim. Acta 2015; 173: 465
  • 22 Sengmany S, Vasseur S, Lajnef A, Le Gall E, Léonel E. Eur. J. Org. Chem. 2016; 4865
  • 23 Qiu H, Shuai B, Wang YZ, Liu D, Chen YG, Gao PS, Ma HX, Chen S, Mei TS. J. Am. Chem. Soc. 2020; 142: 9872
  • 24 Walker BR, Sevov CS. ACS Catal. 2019; 9: 7197
  • 25 Perkins RJ, Pedro DJ, Hansen EC. Org. Lett. 2017; 19: 3755
  • 26 Jiao KJ, Liu D, Ma HX, Qiu H, Fang P, Mei TS. Angew. Chem. Int. Ed. 2020; 59: 6520
  • 27 Truesdell BL, Hamby TB, Sevov CS. J. Am. Chem. Soc. 2020; 142: 5884
  • 28 Li Z, Sun W, Wang X, Li L, Zhang Y, Li C. J. Am. Chem. Soc. 2021; 143: 3536
  • 29 Ma Y, Hong J, Yao X, Liu C, Zhang L, Fu Y, Sun M, Cheng R, Li Z, Ye J. Org. Lett. 2021; 23: 9387
  • 30 Hamby TB, LaLama MJ, Sevov CS. Science 2022; 376: 410
  • 31 Habibi D, Pakravan N, Nematollahi D. J. Electroanal. Chem. 2015; 759: 190
  • 32 Harwood SJ, Palkowitz MD, Gannett CN, Perez P, Yao Z, Sun L, Abruna HD, Anderson SL, Baran PS. Science 2022; 375: 745
  • 33 Lai YL, Huang JM. Org. Lett. 2017; 19: 2022
  • 34 Zhang W, Lu L, Zhang W, Wang Y, Ware SD, Mondragon J, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature 2022; 604: 292
  • 35 Katayama A, Senboku H. ChemElectroChem 2016; 3: 2052
  • 36 Xie SL, Gao XT, Wu HH, Zhou F, Zhou J. Org. Lett. 2020; 22: 8424
  • 37 Senboku H, Yoneda K, Hara S. Tetrahedron Lett. 2015; 56: 6772
  • 38 Jiao K.-J, Li Z.-M, Xu X.-T, Zhang L.-P, Li Y.-Q, Zhang K, Mei T.-S. Org. Chem. Front. 2018; 5: 2244
  • 39 Zhang W, Lin S. J. Am. Chem. Soc. 2020; 142: 20661
  • 40 Gao Y, Hill DE, Hao W, McNicholas BJ, Vantourout JC, Hadt RG, Reisman SE, Blackmond DG, Baran PS. J. Am. Chem. Soc. 2021; 143: 9478
  • 41 Dejardin C, Renou A, Maddaluno J, Durandetti M. J. Org. Chem. 2021; 86: 8882
  • 42 Wang B, Peng P, Ma W, Liu Z, Huang C, Cao Y, Hu P, Qi X, Lu Q. J. Am. Chem. Soc. 2021; 143: 12985