Synlett 2023; 34(11): 1200-1214
DOI: 10.1055/a-2003-2276
account

Chiral Phosphoric Acid Catalyzed Asymmetric Cycloadditions: from Alkenes to Alkynes

Liu-Yang Wang
,
Lan Yang
,
Jie Chen
,
Ling Zhou
We thank the Natural Science Basic Research Plan in Shaanxi Province of China (2021JZ-40, 2021JM-305) for financial support.


Abstract

Organocatalytic asymmetric cycloaddition reactions are the foundation for the construction of important cyclic molecules in synthetic chemistry and biochemistry. As a result, organic catalysts, in particular chiral phosphoric acid, entice researchers from all over the world to design and develop asymmetric cycloaddition reactions. In this Account, we discuss CPA-catalyzed [3+2] and [4+2] cycloaddition of alkenes and some further transformations from the cycloadducts, as well as several mechanisms related to these cycloadditions. All kinds of enantioenriched carbocycles and heterocycles with stereogenic centers could be synthesized efficiently. Recent advances in CPA-catalyzed cycloaddition of alkynes to generate axially chiral compounds are also discussed.

1 Introduction

2 CPA-Catalyzed [3+2] Cycloaddition of Alkenes

3 CPA-Catalyzed [4+2] Cycloaddition of Alkenes

4 CPA-Catalyzed Cycloaddition of Alkynes

5 Conclusions



Publication History

Received: 08 December 2022

Accepted after revision: 22 December 2022

Accepted Manuscript online:
22 December 2022

Article published online:
16 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
    • 1b Perreault S, Rovis T. Chem. Soc. Rev. 2009; 38: 3149
    • 1c Harmata M. Adv. Synth. Catal. 2006; 348: 2297
    • 1d Zhou Y.-Y, Li J, Ling L, Liao S.-H, Sun X.-L, Li Y.-X, Wang L.-J, Tang Y. Angew. Chem. Int. Ed. 2013; 52: 1452
    • 2a Ylijoki KE. O, Stryker JM. Chem. Rev. 2013; 113: 2244
    • 2b Xing Y, Wang N.-X. Coord. Chem. Rev. 2012; 256: 938
    • 2c Xie M, Liu X, Wu X, Cai Y, Lin L, Feng X. Angew. Chem. Int. Ed. 2013; 52: 5604
    • 2d Eschenbrenner-Lux V, Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2014; 53: 11146
    • 3a Sakakura A, Ishihara K. Chem. Soc. Rev. 2011; 40: 163
    • 3b Biswas S, Parsutkar MM, Jing SM, Pagar VV, Herbort JH, RajanBabu TV. Acc. Chem. Res. 2021; 54: 4545
    • 3c Johnson JS, Evans DA. Acc. Chem. Res. 2000; 33: 325
    • 3d Chen W, Yang D. Chin. J. Org. Chem. 2016; 36: 2075
    • 4a Klier L, Tur F, Poulsen PH, Jørgensen KA. Chem. Soc. Rev. 2017; 46: 1080
    • 4b Liu X, Zheng H, Xia Y, Lin L, Feng X. Acc. Chem. Res. 2017; 50: 2621
    • 5a Laina-Martin V, Fernandez-Salas JA, Aleman J. Chem. Eur. J. 2021; 27: 12509
    • 5b Ma Y.-H, He X.-Y, Yang Q.-Q, Boucherif A, Xuan J. Asian J. Org. Chem. 2021; 10: 1233
    • 5c Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 6a Woldegiorgis AG, Suleman M, Lin X. Eur. J. Org. Chem. 2022; e202200624
    • 6b Held FE, Grau D, Tsogoeva SB. Molecules 2015; 20: 16103
    • 7a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 7b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
  • 9 Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 10a Li W, Zhou L, Zhang J. Chem. Eur. J. 2016; 22: 1558
    • 10b Feng H.-X, Wang Y.-Y, Chen J, Zhou L. Adv. Synth. Catal. 2015; 357: 940
    • 10c Xu W.-L, Zhang H, Hu Y.-L, Yang H, Chen J, Zhou L. Org. Lett. 2018; 20: 5774
    • 11a Xu W.-L, Tang L, Ge C.-Y, Chen J, Zhou L. Adv. Synth. Catal. 2019; 361: 2268
    • 11b Xu W.-L, Hu W, Zhao W.-M, Wang M, Chen J, Zhou L. Org. Lett. 2020; 22: 7169
    • 11c Sharif A, Sun H.-R, Xu W.-L, Gou B.-B, Yang L, Li Y, Chen J, Zhou L. Org. Lett. 2022; 24: 4316
    • 12a Zhao M, Zhang Y.-T, Chen J, Zhou L. Asian J. Org. Chem. 2018; 7: 54
    • 12b Zhao M, Chen J, Yang H, Zhou L. Chem. Eur. J. 2017; 23: 2783
    • 12c Sun H.-R, Zhao Q, Yang H, Yang S, Gou B.-B, Chen J, Zhou L. Org. Lett. 2019; 21: 7143
    • 13a Yang H, Chen J, Zhou L. Chem. Asian J. 2020; 15: 2939
    • 13b Quinonero O, Jean M, Vanthuyne N, Roussel C, Bonne D, Constantieux T, Bressy C, Bugaut X, Rodriguez J. Angew. Chem. Int. Ed. 2016; 55: 1401
    • 13c Raut VS, Jean M, Vanthuyne N, Roussel C, Constantieux T, Bressy C, Bugaut X, Bonne D, Rodriguez J. J. Am. Chem. Soc. 2017; 139: 2140
    • 13d Yang H, Xu W.-L, Zeng X.-Y, Chen J, Yu L, Zhou L. Org. Lett. 2021; 23: 9315
    • 14a Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
    • 14b Adrio J, Carretero JC. Chem. Commun. 2019; 55: 11979
    • 14c Cheng F, Kalita SJ, Zhao Z.-N, Yang X, Zhao Y, Schneider U, Shibata N, Huang Y.-Y. Angew. Chem. Int. Ed. 2019; 58: 16637
  • 15 Chen X.-H, Zhang W.-Q, Gong L.-Z. J. Am. Chem. Soc. 2008; 130: 5652
  • 16 Chen X.-H, Wei Q, Luo S.-W, Xiao H, Gong L.-Z. J. Am. Chem. Soc. 2009; 131: 13819
  • 17 Liao L, Shu C, Zhang M, Liao Y, Hu X, Zhang Y, Wu Z, Yuan W, Zhang X. Angew. Chem. Int. Ed. 2014; 53: 10471
  • 18 Zhu R.-Y, Wang C.-S, Zheng J, Shi F, Tu S.-J. J. Org. Chem. 2014; 79: 9305
  • 19 Sun X.-X, Zhang H.-H, Li G.-H, Meng L, Shi F. Chem. Commun. 2016; 52: 2968
  • 20 Wang Y, Wang Q, Zhu J. Chem. Eur. J. 2016; 22: 8084
  • 21 Gelis C, Bekkaye M, Lebée C, Blanchard F, Masson G. Org. Lett. 2016; 18: 3422
  • 22 Li X.-Q, Yang H, Wang J.-J, Gou B.-B, Chen J, Zhou L. Chem. Eur. J. 2017; 23: 5381
  • 23 Feng W, Yang H, Wang Z, Gou B.-B, Chen J, Zhou L. Org. Lett. 2018; 20: 2929
  • 24 Qi L.-W, Mao J.-H, Zhang J, Tan B. Nat. Chem. 2018; 10: 58
  • 25 Li C, Xu D.-N, Ma C, Mei G.-J, Shi F. J. Org. Chem. 2018; 83: 9190
    • 26a Privileged Chiral Ligands and Catalysts . Zhou Q.-L. Wiley-VCH; Weinheim: 2011
    • 26b Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
    • 26c Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J. Chem. Rev. 2015; 115: 11239
    • 26d Cheng JK, Xiang S.-H, Li S, Ye L, Tan B. Chem. Rev. 2021; 121: 4805
    • 27a Wang Y.-B, Tan B. Acc. Chem. Res. 2018; 51: 534
    • 27b Li T.-Z, Liu S.-J, Tan W, Shi F. Chem. Eur. J. 2020; 26: 15779
    • 27c He X.-L, Wang C, Wen Y.-W, Wang Z, Qian S. ChemCatChem 2021; 13: 3547
    • 27d Zhang H.-H, Shi F. Acc. Chem. Res. 2022; 55: 2562
  • 28 Hu Y.-L, Wang Z, Yang H, Chen J, Wu Z.-B, Lei Y, Zhou L. Chem. Sci. 2019; 10: 6777
  • 29 Xu W.-L, Zhao W.-M, Zhang R.-X, Chen J, Zhou L. Chem. Sci. 2021; 12: 14920
    • 30a Lin L, Liu X, Feng X. Synlett 2007; 2147
    • 30b Li J.-L, Liu T.-Y, Chen Y.-C. Acc. Chem. Res. 2012; 45: 1491
    • 30c Jiang X, Wang R. Chem. Rev. 2013; 113: 5515
    • 30d Masson G, Lalli C, Benohoud M, Dagousset G. Chem. Soc. Rev. 2013; 42: 902
    • 30e Fochi M, Caruana L, Bernardi L. Synthesis 2014; 46: 135
  • 31 Itoh J, Fuchibe K, Akiyama T. Angew. Chem. Int. Ed. 2006; 45: 4796
  • 32 Akiyama T, Tamura Y, Itoh J, Morita H, Fuchibe K. Synlett 2006; 141
  • 33 Akiyama T, Morita H, Fuchibe K. J. Am. Chem. Soc. 2006; 128: 13070
  • 34 Liu H, Dagousset G, Masson G, Retailleau P, Zhu J. J. Am. Chem. Soc. 2009; 131: 4598
  • 35 He L, Laurent G, Retailleau P, Folléas B, Brayer J.-L, Masson G. Angew. Chem. Int. Ed. 2013; 52: 11088
  • 36 Bergonzini G, Gramigna L, Mazzanti A, Fochi M, Bernardi L, Ricci A. Chem. Commun. 2010; 46: 327
  • 37 Hatano M, Goto Y, Izumiseki A, Akakura M, Ishihara K. J. Am. Chem. Soc. 2015; 137: 13472
  • 38 Hatano M, Sakamoto T, Mochizuki T, Ishihara K. Asian J. Org. Chem. 2019; 8: 1061
  • 39 Zhao Q, Li Y, Zhang Q.-X, Cheng J.-P, Li X. Angew. Chem. Int. Ed. 2021; 60: 17608
  • 40 Bisag GD, Pecorari D, Mazzanti A, Bernardi L, Fochi M, Bencivenni G, Bertuzzi G, Corti V. Chem. Eur. J. 2019; 25: 15694
  • 41 Wang S.-J, Wang Z, Tang Y, Chen J, Zhou L. Org. Lett. 2020; 22: 8894
  • 42 Momiyama N, Tabuse H, Terada M. J. Am. Chem. Soc. 2009; 131: 12882
  • 43 Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
  • 44 Tu M.-S, Liu S.-J, Zhong C, Zhang S, Zhang H, Zheng Y.-L, Shi F. J. Org. Chem. 2020; 85: 5403
  • 45 Wang Y, Tu M.-S, Yin L, Sun M, Shi F. J. Org. Chem. 2015; 80: 3223
  • 46 Koay WL, Mei G.-J, Lu Y. Org. Chem. Front. 2021; 8: 968
  • 47 Wang Z, Sun J. Org. Lett. 2017; 19: 2334
  • 48 You Y, Li T.-T, Yuan S.-P, Xie K.-X, Wang Z.-H, Zhao J.-Q, Zhou M.-Q, Yuan W.-C. Chem. Commun. 2020; 56: 439
  • 49 Feng S, Yang B, Chen T, Wang R, Deng Y.-H, Shao Z. J. Org. Chem. 2020; 85: 5231
  • 50 Pous J, Courant T, Bernadat G, Iorga BI, Blanchard F, Masson G. J. Am. Chem. Soc. 2015; 137: 11950
  • 51 Varlet T, Matišić M, Van Elslande E, Neuville L, Gandon V, Masson G. J. Am. Chem. Soc. 2021; 143: 11611
  • 52 Zhu X.-Q, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2022; 61: e202214925

    • For selected racemic examples, see:
    • 53a Yang Y, Liu H, Peng C, Wu J, Zhang J, Qiao Y, Wang X.-N, Chang J. Org. Lett. 2016; 18: 5022
    • 53b Bu H.-Z, Li H.-H, Luo W.-F, Luo C, Qian P.-C, Ye L.-W. Org. Lett. 2020; 22: 648
    • 53c Feng Q, Wu A, Zhang X, Song L, Sun J. Chem. Sci. 2021; 12: 7953
    • 53d Zhu C.-F, Chen L.-Q, Hao W.-J, Cui C.-C, Tu S.-J, Jiang B. Org. Lett. 2021; 23: 2654
  • 54 Yang H, Sun H.-R, He R.-Q, Yu L, Hu W, Chen J, Yang S, Zhang G.-G, Zhou L. Nat. Commun. 2022; 13: 632
  • 55 Gou B.-B, Tang Y, Lin Y.-H, Yu L, Jian Q.-S, Sun H.-R, Chen J, Zhou L. Angew. Chem. Int. Ed. 2022; 61: e202208174