Synlett 2023; 34(11): 1215-1229
DOI: 10.1055/a-2010-7874
account

The Untold Journey of Total Synthesis of Natural Products

Rongbiao Tong
a   Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. of China
b   The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou 511458, P. R. of China
› Author Affiliations
This research was financially supported by the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (SMSEGL20Sc01-B), and Research Grant Council of Hong Kong (C6026-19G, 16307219, 16306920, and 16300921).


Abstract

This personal Account presents the developments of two synthetic strategies (Phenol Oxidative Dearomatization, POD; and Furan Oxidative dearomatization, FOD) for total synthesis of natural products. The POD program was originally derived from our first total synthesis of tenuipyrone, while our productive FOD program arose from the total synthesis of the uprolide family. Instead of a review summary of our total synthesis, this Account is focused on how these total synthesis projects are conceived and connected from the perspective of laboratory development. It is evident that total synthesis is not an isolated event, but a connecting and inspirational point that sparks new ideas and new projects.

1 Introduction

2 Total Synthesis versus Synthetic Methodology

3 Development of Phenol Oxidative Dearomatization (POD) for Total Synthesis

4 Development of Furan Oxidative Dearomatization (FOD, Achmatowicz rearrangement) for Total Synthesis

5 Conclusion and Outlook



Publication History

Received: 30 December 2022

Accepted: 11 January 2023

Accepted Manuscript online:
11 January 2023

Article published online:
15 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hoffmann R. Angew. Chem., Int. Ed. Engl. 1988; 27: 1593
  • 2 Asai T, Chung Y.-M, Sakurai H, Ozeki T, Chang F.-R, Yamashita K, Oshima Y. Org. Lett. 2012; 14: 513
  • 3 Song L, Yao H, Zhu L, Tong R. Org. Lett. 2013; 15: 6
  • 4 Kusuda S, Ueno Y, Toru T. Bull. Chem. Soc. Jpn. 1993; 66: 2720
  • 5 Yao HL, Song LY, Liu Y, Tong R. J. Org. Chem. 2014; 79: 8774
  • 6 Barradas S, Urbano A, Carreño MC. Chem. Eur. J. 2009; 15: 9286
  • 7 Song LY, Liu Y, Tong R. Org. Lett. 2013; 15: 5850
  • 8 Song LY, Lee KH, Lin ZY, Tong R. J. Org. Chem. 2014; 79: 1493
  • 9 Ackland MJ, Hanson JR, Hitchcock PB, Ratcliffe AH. J. Chem. Soc., Perkin Trans. 1 1985; 843
  • 10 Wang J, Tong R. J. Org. Chem. 2016; 81: 4325
  • 11 Wang J, Tong R. Org. Lett. 2016; 18: 1936
  • 12 Wong Y.-S. Chem. Commun. 2002; 686
  • 13 Song LY, Yao HL, Dai YJ, Wu MW, Tong RB. Tetrahedron Lett. 2016; 57: 4257
  • 14 Yao HL, Song LY, Tong R. J. Org. Chem. 2014; 79: 1498
  • 15 Song LY, Yao HL, Tong R. Org. Lett. 2014; 16: 3740
  • 16 Wei L, Xiao M, Xie Z. Org. Lett. 2014; 16: 2784
  • 17 Song L, Huang F, Guo L, Ouyang M.-A, Tong R. Chem. Commun. 2017; 53: 6021
  • 18 Song L, Su Q, Lin X, Du Z, Xu H, Ouyang M.-A, Yao H, Tong R. Org. Lett. 2020; 22: 3004
  • 19 Rodríguez AD, Soto JJ, Barnes CL. J. Org. Chem. 2000; 65: 7700
  • 20 Zhu L, Liu Y, Ma R, Tong R. Angew. Chem. Int. Ed. 2015; 54: 627
  • 21 Zhu LY, Tong R. Synlett 2015; 26: 1643
  • 22 Zhu LY, Tong R. Org. Lett. 2015; 17: 1966
  • 23 Liang LX, Guo LD, Tong R. Acc. Chem. Res. 2022; 55: 2326
  • 24 Zhu LY, Song LY, Tong R. Org. Lett. 2012; 14: 5892
  • 25 Li ZL, Leung TF, Tong R. Chem. Commun. 2014; 50: 10990
  • 26 Li ZL, Ip FC. F, Ip NY, Tong R. Chem. Eur. J. 2015; 21: 11152
  • 27 Li ZL, Tong R. Synthesis 2016; 48: 1630
  • 28 Li ZL, Tong R. J. Org. Chem. 2017; 82: 1127
    • 29a Zhao GD, Canterbury DP, Taylor AP, Cheng XY, Mikochik P, Bagley SW, Tong R. Org. Lett. 2020; 22: 458
    • 29b Liaw MW, Cheng WF, Tong R. J. Org. Chem. 2020; 85: 6663
  • 30 Li Z, Tong R. J. Org. Chem. 2016; 81: 4847
  • 31 Marquez-Cadena MA, Ren JY, Ye WK, Qian PY, Tong RB. Org. Lett. 2019; 21: 9704
  • 32 Nakamura Y, Kato H, Nishikawa T, Iwasaki N, Suwa Y, Rotinsulu H, Losung F, Maarisit W, Mangindaan RE. P, Morioka H, Yokosawa H, Tsukamoto S. Org. Lett. 2013; 15: 322
  • 33 Zhang W, Tong R. J. Org. Chem. 2016; 81: 2203
  • 34 Ren JY, Liu Y, Song LY, Tong R. Org. Lett. 2014; 16: 2986
  • 35 Ren JY, Tong R. J. Org. Chem. 2014; 79: 6987
  • 36 Ren JY, Wang J, Tong R. Org. Lett. 2015; 17: 744
  • 37 Guo LD, Xu Z, Tong R. Angew. Chem. Int. Ed. 2022; 61: e202115384
  • 38 Zhao GD, Liang LX, Wang EY, Tong R. ACS Catal. 2021; 11: 3740
  • 39 Wang J, Marquez-Cadena MA, Tong R. Org. Lett. 2020; 22: 5074
  • 40 Ma FQ, He CX, Wang EY, Tong R. Org. Lett. 2021; 23: 6583
  • 41 Zhao GD, Liang LX, Wen CH. E, Tong R. Org. Lett. 2019; 21: 315