Synlett 2023; 34(11): 1247-1252
DOI: 10.1055/a-2015-7526
letter

Catalyst-Free Oxidation of Sulfides to Sulfoxides by gem-Dihydroperoxide under Mild Conditions

,
Nadezhda M. Andrijashina
,
,
Arkadiy V. Antipin
,
Rustam L. Safiullin
This research was carried out on state assignment theme No. 122031400201-0. MESRF (Ministry of Education and Science of Russia).


Abstract

A facile and efficient method for the oxidation of sulfides (dialkyl, phenylalkyl, benzylalkyl) to sulfoxides under mild conditions without using any catalysts is reported. This method afforded a series of sulfoxides with good yields (>95%). The ready accessibility and low cost of the gem-dihydroperoxides will endow it with attractive applications in chemical synthesis as oxidants.

Supporting Information



Publication History

Received: 17 November 2022

Accepted after revision: 18 January 2023

Accepted Manuscript online:
18 January 2023

Article published online:
15 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Terent’ev AO, Platonov MM, Kutkin AV. Cent. Eur. J. Chem. 2006; 4: 207
    • 1b Peroxide Chemistry: Mechanistic and Preparative Aspects of Oxygen Transfer. Adam W. Wiley-VCH; Weinheim: 2000
    • 1c Cosijn AH. M, Ossewold MG. J. Recl. Trav. Chim. Pays-Bas 1968; 87: 1264
    • 1d Terent’ev AO, Platonov MM, Ogibin YN, Nikishin GI. Synth. Commun. 2007; 37: 1281
    • 2a Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, 2nd ed. Mishra M, Yagci Y. CRC Press; Boca Raton: 2008
    • 2b Sheppard CS, Kamath VR. Polym. Eng. Sci. 1979; 19: 597
    • 3a Todorović NM, Stefanović M, Tinant B, Declercq J.-P, Makler MT, Šolaja BA. Steroids 1996; 61: 688
    • 3b Žmitek K, Zupan M, Iskra J. Org. Biomol. Chem. 2007; 5: 3895
    • 3c Tropina VI, Krivykh OV, Sadchikova NP, Terent’ev AO, Krylov IB. Pharm. Chem. J. 2010; 44: 248
  • 4 Selvam JJ. P, Suresh V, Rajesh K, Babu C, Suryakiran N, Venkateswarlu Y. Tetrahedron Lett. 2008; 49: 3463
    • 5a Hogan P, Hopes P, Moss W, Robinson G, Patel I. Org. Process Res. Dev. 2002; 6: 225
    • 5b Siegert M, Knittel C, Süssmuth R. Angew. Chem. Int. Ed. 2020; 59: 5500
    • 5c Xie D, Wang Y, Zhang X, Fu Z, Niu D. Angew. Chem. Int. Ed. 2022; 61: e202204922
    • 5d Richter J, Kahrilas P, Johanson J, Maton P, Breiter J, Wang C, Marino V, Hamelin B, Levine J, Investigators E. Am. J. Gastroenterol. 2001; 96: 656
    • 5e Zhang J, Wei C, Li S, Hu D, Song B. Pestic. Biochem. Physiol. 2020; 167: 104605
    • 6a Murray RW, Jeyaraman R, Pillay MK. J. Org. Chem. 1987; 52: 746
    • 6b Adam W, Golsch D. Chem. Ber. 1994; 127: 1111
    • 6c Adam W, Golsch D, Hadjiarrpoglou L, Lévai A, Nemes C, Patonay T. Tetrahedron 1994; 50: 13113
    • 7a Patek M, Drake B, Lebel M. Tetrahedron Lett. 1995; 36: 2227
    • 7b Oae S, Takata T, Kim YH. Bull. Chem. Soc. Jpn. 1982; 55: 2484
    • 7c Ali MH, Stevens WC. Synthesis 1997; 764
    • 7d Vostrikov NS, Spirikhin LV, Lobov AN, Gimazetdinov AM, Zileeva ZR, Vakhitova YV. Mendeleev Commun. 2019; 29: 372
  • 8 Kluge R, Schulz M, Liebsch S. Tetrahedron 1996; 52: 5773
  • 9 Sylvian S, Wanger A, Mioskowosky C. Tetrahedron Lett. 1997; 38: 1043
  • 10 Kowalski P, Mitka K, Ossowska K, Kolarska Z. Tetrahedron 2005; 61: 1933
    • 11a Kaczorowska K, Kolarska Z, Mitka K, Kowalski P. Tetrahedron 2005; 61: 8315
    • 11b Li X, Wang Y, Yang L, Zhang Z, Xie X. Tetrahedron 2022; 110: 132708
    • 11c Skolia E, Gkizis PL, Kokotos CG. ChemPlusChem 2022; 87: e202200008
    • 12a Bagherzadeh M, Tahsini L, Latifi R. Catal. Commun. 2008; 9: 1600
    • 12b Bagherzadeh M, Zare M. J. Sulfur Chem. 2011; 32: 335
    • 12c Zakavi S, Abasi A, Pourali AR, Talebzadeh S. Bull. Korean Chem. Soc. 2012; 3: 35
    • 12d Rayati S, Nejabat F, Zakavi S. Inorg. Chem. Commun. 2014; 40: 82
  • 13 Andriyashina NM, Grabovskii SA, Safiullin RL. Lett. Org. Chem. 2023; in press DOI: 10.2174/1570178619666220727114411.
    • 14a Bunge A, Hamann H.-J, Dietz D, Liebscher J. Tetrahedron 2013; 69: 2446
    • 14b Bunge A, Hamann H.-J, McCalmont E, Liebscher J. Tetrahedron Lett. 2009; 50: 4629
    • 15a Hauser SA, Cokoja M, Kühn FE. Catal. Sci. Technol. 2013; 3: 552
    • 15b Xia Q.-H, Ge H.-Q, Ye C.-P, Liu Z.-M, Su K.-X. Chem. Rev. 2005; 105: 1603
  • 16 Jiang X, Yao C, Tong C, Bai R, Zhou T, Xie Y. Chin. J. Org. Chem. 2020; 40: 1752
  • 17 General Method for the Preparation of Sulfoxides Sulfide 212 (1 mmol) was dissolved in an appropriate solvent, and a gem-dihydroperoxide 1a 1d (0.6 mmol) solution in the same solvent was added. The reaction mass was left protected from light. The reaction progress was monitored by TLС or HPLC. At the end of the reaction, the solvent was evaporated and purification by flash chromatography on silica gel was performed. Methyl Pentyl Sulfoxide (2a) Colorless oil. IR: νmax = 2957, 2930, 2860, 1466, 1423, 1379, 1303, 1022, 962, 941, 729, 694 cm–1. 1H NMR (500 MHz, СD3OD): δ = 2.87–2.72 (m, 2 H, SCH2), 2.621 (s, 3 H, SCH3), 1.82–1.68 (m, 2 H, C2H2), 1.54–1.34 (m, 4 H, C3,4H2), 0.944 (t, J  = 7.15  Hz, 3 H, CH2CH 3). 13C NMR (125 MHz, СD3OD): δ = 54.86 (SCH2), 38.10 (SCH3), 31.90 (C3H2), 23.34 (C2,4H2), 14.17 (CH2 CH3). HRMS: m/z calcd for C6H15OS [M + H]: 135.0844; found: 135.0841. Anal. Calcd (%): C, 53.68; H, 10.51, S, 23.89%. Found: C, 53.73; H, 10.32; S, 24.0. Methyl Heptyl Sulfoxide (3a) Colorless oil. IR: νmax = 2954, 2927, 2856, 1466, 1417, 1379, 1304, 1034, 943, 723, 692 cm–1. 1H NMR (500 MHz, CDCl3): δ = 2.76–2.68 (m, 1 H, SCH2), 2.67–2.58 (m, 1 H, SCH2), 2.538 (s, 3 H, SCH3), 1.73–1.65 (m, 2 H, C2H2), 1.48–1.34 (m, 2 H, C6H2), 1.34–1.19 (m, 6 H, C3–5H2), 0.838 (t, J  = 6.75  Hz, 3 H, CH2CH 3). 13C NMR (125 MHz, CDCl3): δ = 54.56 (SCH2), 38.33 (SCH3), 31.45 (CH2), 28.77 (CH2), 28.66 (CH2), 22.50 (C2H2), 22.45 (C6H2), 13.94 (CH2 CH3). HRMS: m/z calcd for C8H19OS [M + H]: 163.1157; found: 163.1166. Anal. Calcd (%): C, 59.21; H, 11.18; S, 19.76. Found: C, 59.09; H, 11.13; S, 19.79. Diheptyl Sulfoxide (4a) White crystals, mp 66 °C. IR: νmax = 2953, 2912, 2852, 1463, 1377, 1010, 989 cm–1. 1H NMR (500 MHz, СD3OD): δ = 2.84–2.70, (m, 4 H, C1H2), 1.81–1.69 (m, 4 H, C2H2), 1.54–1.41 (m, 4 H, C3H2), 1.41–1.27 (m, 12 H, C4–6H2), 0.910 (t, J  = 6.8 Hz, 6 H, CH3). 13C NMR (125 MHz, СD3OD): δ = 52.82 (C1H2), 32.76 (C4H2), 30.00 (C5H2), 29.75 (C3H2), 23.79 (C2H2), 23.62 (C6H2), 14.38 (CH3). HRMS: m/z calcd for C14H31OS [M + H]: 247.2096; found: 247.2100. Anal. Calcd (%): C, 68.23; H, 12.27; S, 13.01. Found: C, 68.07; H, 12.30; S, 13.15. tert-Amyl Ethyl Sulfoxide (5a) Colorless oil. IR: νmax = 2969, 2936, 2880, 1462, 1382, 1365, 1044, 1010, 972 cm–1. 1H NMR (500 MHz, СD3OD): δ = 2.75–2.65, 2.61–2.51 (2 m, total 2 H, SCH 2Me), 1.77–1.66 (m, 1 H, MeCH 2CMe2), 1.63–1.52 (m, 1 H, MeCH 2CMe2), 1.368 (t, J  = 7.5  Hz, 3 H, SCH2CH 3), 1.227 (s, 3 H, SC(CH3)2), 1.182 (s, 3 H, SC(CH3)2), 1.008 (t, J =7.6  Hz, 3 H, CH 3CH2CMe2). 13C NMR (125 MHz, СD3OD): δ = 57.64 (SCMe2), 39.17 (SCH2Me), 30.01 (MeCH2CMe2), 19.71 and 19.41 (SC(CH3)2), 8.73 (SCH2 CH3), 8.15 (CH3CH2CMe2). HRMS: m/z calcd for C7H17OS [M + H]: 149.1000; found: 149.1000. Anal. Calcd (%): C, 56.71; H, 10.88; S, 21.63. Found: C, 56.94; H, 10.79; S, 21.45. Diisobutyl Sulfoxide (6a) IR: νmax = 2922, 2854, 1456, 1379, 1016 cm–1. 1H NMR (500 MHz, СD3OD): δ = 2.74–2.69, 2.61–2.55 (2 m, 4 H, CH2), 2.21–2.11 (m, 2 H, CH), 1.12–1.08 (m, 12 H, CH3). 13C NMR (125 MHz, СD3OD): δ = 62.41 (CH2), 25.15 (CH), 23.06 (CH3), 21.74 (CH3). HRMS: m/z calcd for C8H19OS [M + H]: 163.1157; found: 163.1151. Anal. Calcd (%): C, 59.21; H, 11.18; S, 19.76. Found: C, 59.29; H, 11.32; S, 20.12. 3,5-Dimethyl-4-[(pentylsulfinyl)methyl]-1H-pyrazole (12a) White crystals, mp 87 °C. IR: νmax = 2949, 2923, 2853, 1590, 1461, 1415, 1377, 1308, 1207, 1139, 1109, 1072, 1034, 1017, 1003, 949, 875, 835, 758, 729 cm–1. 1H NMR (500 MHz, DMSO-d 6): δ = 12.206 (s, wide, 1 H, NH), 3.861 (d, J = 7.0  Hz, 1 H, SCH 2-pyrazole), 3.719 (d, J = 7.0  Hz, 1 H, SCH 2-pyrazole), 2.71–2.62 (m, 1 H, SCH 2CH2), 2.60–2.53 (m, 1 H, SCH 2CH2), 2.129 (s, 6 H, CH3(pyrazole)), 1.72–1.55 (m, 2 H, SCH2CH 2), 1.43–1.25 (m, 4 H, CH2), 0.872 (t, 3 H, CH2CH 3). 13C NMR (125 MHz, DMSO-d 6): δ = 128.23, 104.90 (SCH2-pyrazole), 50.08, 46.52, 30.35, 26.73, 21.76, 21.70, 13.66, 10.66 (br, 2 Me). HRMS: m/z calcd for C11H21OS [M + H]: 229.1375; found: 229.1379. Anal. Calcd (%): C, 57.86; H, 8.83; N, 12.27; S, 14.04. Found: C, 57.91; H, 8.95; N, 12.28; S, 14.19.
    • 18a Ulendeeva AD, Nikitina TS, Baeva LA, Spitikhin LV, Karachurina LT, Khisamutdinova RYu, Makara NS, Zarudii FS, Lyapina NK. Pharm. Chem. J. 2004; 38: 659
    • 18b Ulendeeva AD, Baeva LA, Nikitina TS, Spitikhin LV, Vasil’eva EV, Lyapina NK. Pet. Chem. 2004; 44: 388
    • 19a Tarsis E, Gromova A, Lim D, Zhou G, Coltart DM. Org. Lett. 2008; 10: 4819
    • 19b Horhant D, Lamer A.-CL, Boustie J, Uriac P, Gouault N. Tetrahedron Lett. 2007; 48: 6031