RSS-Feed abonnieren
DOI: 10.1055/a-2385-3739
Positronen-Emissions-Tomographie (PET) in der Neuroonkologie: zunehmender Stellenwert in der interdisziplinären Behandlung von Hirntumoren
Positron emission tomography (PET) in neuro-oncology: a growing asset in interdisciplinary care of brain tumors
Zusammenfassung
Hirntumoren sind eine heterogene Gruppe von bei Erwachsenen insgesamt eher seltenen Neoplasien. Während sie nur ca. 1–2% aller neu diagnostizierten Krebserkrankungen ausmachen, stellen sie aufgrund ihrer eingeschränkten Prognose jedoch oft eine klinische Herausforderung dar. Aufgrund des hohen Weichteilkontrastes ist die Magnetresonanztomografie weiterhin die Modalität der Wahl in der bildgebenden Diagnostik, wobei insbesondere die Abgrenzung von therapieassoziierten Veränderungen von Tumorprogression teils schwierig ist. Daher ist der Stellenwert der Positronen-Emissions-Tomografie (PET) in den letzten Jahren deutlich gewachsen, weshalb diese zunehmend auch bei weiteren Fragestellungen eingesetzt wird. In diesem kurzen Übersichtsartikel soll ein Überblick über den Stellenwert der PET in den wichtigsten Entitäten der Neuroonkologie bei Erwachsenen gegeben werden, wobei der Fokus auf Gliomen, Meningeomen und Hirnmetastasen liegen soll.
Abstract
Brain tumors are a heterogeneous group of overall rare neoplasms in adults. While the account for only 1-2% of newly diagnosed malignancies, they frequently represent a clinical challenge due to their limited prognosis. Magnetic resonance tomography remains the mainstay of diagnostic imaging in brain tumors given the high soft tissue contrast, although the differentiation of treatment-related changes from tumor progression remains challenging. Therefore, the value of positron emission tomography (PET) has been increasingly recognized in past years, and clinical situations where PET adds value are expanding. This short review aims at providing an overview on the value of PET in the most prevalent entities of adult neuro-oncology such as glioma, meningioma, and brain metastasis.
Schlüsselwörter
Positronen-Emissions-Tomographie - Hirntumoren - Neuroonkologie - Gliome - Hirnmetastasen - MeningeomeKeywords
Positron emission tomography - brain tumors - neuro-oncology - glioma - brain metastasis - meningiomaPublikationsverlauf
Artikel online veröffentlicht:
02. September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literaturverzeichnis
- 1 Bray F, Laversanne M, Sung H. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clinicians 2024; 74: 229-263
- 2 Rouse C, Gittleman H, Ostrom QT. et al. Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro Oncol 2016; 18: 70-77
- 3 Ostrom QT, Price M, Neff C. et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016—2020. Neuro Oncol 2023; 25: iv1-iv99
- 4 Goldbrunner R, Stavrinou P, Jenkinson MD. et al. EANO guideline on the diagnosis and management of meningiomas. Neuro Oncol 2021; 23: 1821-1834
- 5 Weller M, van den Bent M, Preusser M. et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 2021; 18: 170-186
- 6 Stupp R, Hegi ME, Mason WP. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The Lancet Oncology 2009; 10: 459-466
- 7 Mair MJ, Geurts M, van den Bent MJ. et al. A basic review on systemic treatment options in WHO grade II-III gliomas. Cancer Treatment Reviews 2021; 92: 102124
- 8 Lamba N, Wen PY, Aizer AA. Epidemiology of brain metastases and leptomeningeal disease. Neuro Oncol 2021; 23: 1447-1456
- 9 Sperduto PW, Mesko S, Li J. et al. Survival in Patients With Brain Metastases: Summary Report on the Updated Diagnosis-Specific Graded Prognostic Assessment and Definition of the Eligibility Quotient. JCO 2020; 38: 3773-3784
- 10 Le Rhun E, Guckenberger M, Smits M. et al. EANO–ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with brain metastasis from solid tumours. Ann Oncol 2021; 32: 1332-1347
- 11 Mair MJ, Bartsch R, Le Rhun E. et al. Understanding the activity of antibody–drug conjugates in primary and secondary brain tumours. Nat Rev Clin Oncol 2023; 20: 372-389
- 12 Galldiks N, Kaufmann TJ, Vollmuth P. et al. Challenges, limitations, and pitfalls of PET and advanced MRI in patients with brain tumors: A report of the PET/RANO group. Neuro Oncol 2024; 26: 1181-1194
- 13 Law I, Albert NL, Arbizu J. et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 2019; 46: 540-557
- 14 Verger A, Tolboom N, Cicone F. et al. Joint EANM/EANO/RANO/SNMMI practice guideline/procedure standard for PET imaging of brain metastases: version 1. 0. Eur J Nucl Med Mol Imaging 2025;
- 15 Fleischmann DF, Unterrainer M, Bartenstein P. et al. 18F-FET PET prior to recurrent high-grade glioma re-irradiation-additional prognostic value of dynamic time-to-peak analysis and early static summation images?. J Neurooncol 2017; 132: 277-286
- 16 Suchorska B, Giese A, Biczok A. et al. Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro Oncol 2018; 20: 279-288
- 17 Albert NL, Preusser M, Traub-Weidinger T. et al. Joint EANM/EANO/RANO/SNMMI practice guideline/procedure standards for diagnostics and therapy (theranostics) of meningiomas using radiolabeled somatostatin receptor ligands: version 1. 0. Eur J Nucl Med Mol Imaging 2024;
- 18 Unterrainer M, Kunte SC, Unterrainer LM. et al. Next-generation PET/CT imaging in meningioma—first clinical experiences using the novel SSTR-targeting peptide [18F]SiTATE. Eur J Nucl Med Mol Imaging 2023; 50: 3390-3399
- 19 Rapp M, Heinzel A, Galldiks N. et al. Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med 2013; 54: 229-235
- 20 Ninatti G, Sollini M, Bono B. et al. Preoperative [11C]methionine PET to personalize treatment decisions in patients with lower-grade gliomas. Neuro Oncol 2022; 24: 1546-1556
- 21 Vettermann F, Suchorska B, Unterrainer M. et al. Non-invasive prediction of IDH-wildtype genotype in gliomas using dynamic 18F-FET PET. Eur J Nucl Med Mol Imaging 2019; 46: 2581-2589
- 22 Zaragori T, Oster J, Roch V. et al. 18F-FDOPA PET for the Noninvasive Prediction of Glioma Molecular Parameters: A Radiomics Study. J Nucl Med 2022; 63: 147-157
- 23 Harat M, Rakowska J, Harat M. et al. Combining amino acid PET and MRI imaging increases accuracy to define malignant areas in adult glioma. Nat Commun 2023; 14: 4572
- 24 Hervey-Jumper SL, Berger MS. Maximizing safe resection of low- and high-grade glioma. Journal of Neuro-Oncology 2016; 130: 269-282
- 25 Grosu A-L, Weber W, Graf E. et al. GLIAA: FET-PET- vs. MRI-based re-irradiation in recurrent glioblastoma. A prospective randomized trial. J Nucl Med 2024; 65: 242119
- 26 Albert NL, Galldiks N, Ellingson BM. et al. PET-based response assessment criteria for diffuse gliomas (PET RANO 1.0): a report of the RANO group. Lancet Oncol 2024; 25: e29-e41
- 27 Bosnyák E, Barger GR, Michelhaugh SK. et al. Amino Acid PET Imaging of the Early Metabolic Response During Tumor-Treating Fields (TTFields) Therapy in Recurrent Glioblastoma. Clin Nucl Med 2018; 43: 176-179
- 28 Zikou A, Sioka C, Alexiou GA. et al. Radiation Necrosis, Pseudoprogression, Pseudoresponse, and Tumor Recurrence: Imaging Challenges for the Evaluation of Treated Gliomas. Contrast Media Mol Imaging 2018; 2018: 6828396
- 29 de Zwart PL, van Dijken BRJ, Holtman GA. et al. Diagnostic Accuracy of PET Tracers for the Differentiation of Tumor Progression from Treatment-Related Changes in High-Grade Glioma: A Systematic Review and Metaanalysis. J Nucl Med 2020; 61: 498-504
- 30 Beppu T, Terasaki K, Sasaki T. et al. MRI and 11C-methyl-L-methionine PET Differentiate Bevacizumab True Responders After Initiating Therapy for Recurrent Glioblastoma. Clin Nucl Med 2016; 41: 852-857
- 31 Wollring MM, Werner J-M, Bauer EK. et al. Prediction of response to lomustine-based chemotherapy in glioma patients at recurrence using MRI and FET PET. Neuro Oncol 2023; 25: 984-994
- 32 Galldiks N, Stoffels G, Filss C. et al. The use of dynamic O-(2–18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol 2015; 17: 1293-1300
- 33 Hirono S, Hasegawa Y, Sakaida T. et al. Feasibility study of finalizing the extended adjuvant temozolomide based on methionine positron emission tomography (Met-PET) findings in patients with glioblastoma. Sci Rep 2019; 9: 17794
- 34 Humbert O, Bourg V, Mondot L. et al. 18F-DOPA PET/CT in brain tumors: impact on multidisciplinary brain tumor board decisions. Eur J Nucl Med Mol Imaging 2019; 46: 558-568
- 35 Ceccon GS, Werner J-M, Ruge MI. et al. The Value of Multidisciplinary Neuro-oncological Tumor Boards to Increase the Accuracy of FET PET for Identifying Brain Tumor Relapse. Clin Nucl Med 2025; 50: 307-315
- 36 Heinzel A, Müller D, Yekta-Michael SS. et al. O-(2–18F-fluoroethyl)-L-tyrosine PET for evaluation of brain metastasis recurrence after radiotherapy: an effectiveness and cost-effectiveness analysis. Neuro Oncol 2017; 19: 1271-1278
- 37 Kowalski ES, Khairnar R, Gryaznov AA. et al. 68Ga-DOTATATE PET-CT as a tool for radiation planning and evaluating treatment responses in the clinical management of meningiomas. Radiat Oncol 2021; 16: 151
- 38 Rachinger W, Stoecklein VM, Terpolilli NA. et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med 2015; 56: 347-353
- 39 Afshar-Oromieh A, Wolf MB, Kratochwil C. et al. Comparison of 68Ga-DOTATOC-PET/CT and PET/MRI hybrid systems in patients with cranial meningioma: Initial results. Neuro-Oncology 2015; 17: 312-319
- 40 Kunz WG, Jungblut LM, Kazmierczak PM. et al. Improved Detection of Transosseous Meningiomas Using 68Ga-DOTATATE PET/CT Compared with Contrast-Enhanced MRI. J Nucl Med 2017; 58: 1580-1587
- 41 Seystahl K, Stoecklein V, Schüller U. et al. Somatostatin receptor-targeted radionuclide therapy for progressive meningioma: benefit linked to 68Ga-DOTATATE/-TOC uptake. Neuro Oncol 2016; 18: 1538-1547
- 42 Mair MJ, Tabouret E, Johnson DR. et al. Radioligand therapies in meningioma: Evidence and future directions. Neuro-Oncology 2024; 26: S215-S228
- 43 Terakawa Y, Tsuyuguchi N, Iwai Y. et al. Diagnostic Accuracy of 11C-Methionine PET for Differentiation of Recurrent Brain Tumors from Radiation Necrosis After Radiotherapy. J Nucl Med 2008; 49: 694-699
- 44 Ceccon G, Lohmann P, Stoffels G. et al. Dynamic O-(2–18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro Oncol 2016;
- 45 Galldiks N, Abdulla DSY, Scheffler M. et al. Treatment Monitoring of Immunotherapy and Targeted Therapy Using 18F-FET PET in Patients with Melanoma and Lung Cancer Brain Metastases: Initial Experiences. J Nucl Med 2021; 62: 464-470
- 46 Albert NL, Galldiks N, Ellingson BM. et al. Response assessment of brain metastases based on amino acid PET imaging: PET RANO BM 1.0 criteria. Nature Medicine 2025; 31 (05) 1424-1430
- 47 Albert NL, Le Rhun E, Minniti G. et al. Translating the theranostic concept to neuro-oncology: disrupting barriers. The Lancet Oncology 2024; 25: e441-e451
- 48 Albert NL, Preusser M. Theranostics and molecular imaging in neuro-oncology: The beginning of a new era. Neuro-Oncology 2024; 26: S183-S184