Subscribe to RSS
DOI: 10.1055/a-2385-3757
Neue Ansätze in der Nuklearmedizinischen Diagnostik und Therapie
New approaches in nuclear medicine diagnostics and therapy
Durch den Erfolg der gegen Somatostatinrezeptoren (SSTR)- und das Prostata-spezifische Membranantigen (PSMA)-gerichteten Radioliganden hat die Nuklearmedizin in den letzten Jahren eine außergewöhnliche Dynamik erfahren. Aktuell wird eine Vielzahl neuer Radiopharmazeutika für theranostische Konzepte entwickelt; wobei das Fibroblasten-aktivierende Protein (FAP) das größte klinische Interesse in den letzten Jahren geweckt hat. Jenseits der FAP-Inhibitoren sind noch weitere Radiopharmazeutika erfolgreich in die Klinik überführt worden. In diesem kurzen Überblick werden wir uns auf fünf Ansätze bzw. Zielstrukturen konzentrieren, die die große Vielfalt der nuklearmedizinischen Theranostik widerspiegeln: den C-X-C-motif Chemokin-Rezeptor 4, die Carboanhydrase IX, Glypican-3, Östrogenrezeptoren und Antagonisten für SSTR 2.
-
Potential theranostischer Konzepte: Mit dem Einsatz von Radiopharmazeutika, wie SSTR- und PSMA-Liganden, hat die Nuklearmedizin in den letzten Jahren neue zielgerichtete Therapien ermöglicht. Aktuell besteht ein großes Interesse an neuen zielgerichteten Radioliganden, die die Forschung in der Theranostik vorantreiben.
-
Die Carboanhydrase IX (CAIX) als Hypoxiemarker: Die CAIX wird unter hypoxischen Bedingungen verstärkt exprimiert und stellt u.a. eine wichtige Zielstruktur in klarzelligen Nierenzellkarzinomen dar. Verschiedene Antikörper- und small molecule-basierte Radiopharmazeutika wurden hier bereits in der Diagnostik und Therapie evaluiert.
-
C-X-C motif Chemokin-Rezeptor 4 (CXCR4) als neuer Tracer in der Hämatoonkologie: CXCR4 wird physiologischerweise von vielen Immunzellen exprimiert. [68Ga]Ga-Pentixafor und [177Lu]Lu/[90Y]Y-Pentixather haben daher vor allem in hämatologischen Neoplasien, wie dem multiplen Myelom, vielversprechende Ergebnisse gezeigt.
-
Glypican-3 als Zielstruktur bei hepoatozellullären Karzinomen: Glypican-3 wird überwiegend von hepatozellulären Karzinomen überexprimiert und weist im gesunden oder zirrhotischen Leberparenchym nahezu keine Expression auf. Erste Studien haben vielversprechende Ergebnisse hinsichtlich sehr guter Tumordetektionsraten mit hohen Tumor-zu-Hintergrund-Kontrasten ergeben.
-
Somatostatinrezeptor-Antagonisten (SSTR-Antagonisten): Während die SSTR-Agonisten DOTATOC/DOTATATE in der klinischen Routine etabliert sind, wurde für SSTR-Antagonisten eine höhere Bindungskapazität im Vergleich zu Agonisten nachgewiesen. Das Potential der SSTR-Antagonisten für die Diagnostik und Therapie in verschiedenen (primär neuroendokrinen) Tumorerkrankungen wird aktuell in Studien untersucht.
-
Östrogenrezeptor (ER)-Bildgebung: Die [18F]FES-PET/CT ist in den USA bereits zugelassen und erlaubt eine in vivo-Darstellung der ER-Expression von Tumorzellen. Dies kann Therapieentscheidungen in der Behandlung des Mammakarzinoms unterstützen.
Schlüsselwörter
Theranostics - PET/CT - Somatostatinrezeptor-Antagonisten - Carboanhydrase IX - C-X-C motif Chemokin-Rezeptor 4 - Glypican-3 - ÖstrogenrezeptorKeywords
theranostics - carbonic anhydrase IX - somatostatin receptor antagonists - C-X-C motif chemokine receptor 4 - glypican-3 - estrogen receptor - PET/CTPublication History
Article published online:
02 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Hirmas N, Hamacher R, Sraieb M. et al. Fibroblast-Activation Protein PET and Histopathology in a Single-Center Database of 324 Patients and 21 Tumor Entities. J Nucl Med 2023; 64: 711-716
- 2 Maxwell PH, Wlesener MS, Chang GW. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399
- 3 Wykoff CC, Beasley NJP, Watson PH. et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 2000; 60: 7075-83
- 4 Cheville JC, Lohse CM, Zincke H. et al. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Path 2003; 27
- 5 Ljungberg B, Bensalah K, Canfield S. et al. Renal Cell carcinoma EAU guidelines on renal cell carcinoma: 2019. Eur Urol 2019; 67: 913-924
- 6 Courcier J, de la Taille A, Nourieh M. et al. Carbonic anhydrase ix in renal cell carcinoma, implications for disease management. Int J Mol Sci 2020; 21
- 7 Liu Y. The place of FDG PET/CT in renal cell carcinoma: Value and limitations. Front Oncol 2016; 6: 201
- 8 Divgi CR, Uzzo RG, Gatsonis C. et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: Results from the REDECT trial. J Clin Oncol 2013; 31
- 9 Hekman MCH, Rijpkema M, Aarntzen EH. et al. Positron Emission Tomography/Computed Tomography with 89Zr-girentuximab Can Aid in Diagnostic Dilemmas of Clear Cell Renal Cell Carcinoma Suspicion. Eur Urol 2018; 74: 257-260
- 10 Shuch BM, Pantuck AJ, Bernhard JC. et al. Results from phase 3 study of 89Zr-DFO-girentuximab for PET/CT imaging of clear cell renal cell carcinoma (ZIRCON). J Clin Oncol 2023; 41
- 11 Telix Completes TLX250-CDx (Zircaix) BLA Submission for Kidney Cancer Imaging - Telix Pharmaceuticals. Accessed August 28, 2024 at: https://telixpharma.com/news-views/telix-completes-tlx250-cdx-zircaix-bla-submission-for-kidney-cancer-imaging/
- 12 Muselaers CHJ, Boers-Sonderen MJ, Van Oostenbrugge TJ. et al. Phase 2 Study of Lutetium 177-Labeled Anti-Carbonic Anhydrase IX Monoclonal Antibody Girentuximab in Patients with Advanced Renal Cell Carcinoma. Eur Urol 2016; 69: 767-70
- 13 Turkbey B, Lindenberg ML, Adler S. et al. PET/CT imaging of renal cell carcinoma with (18)F-VM4–037: a phase II pilot study. Abdom Radiol (NY) 2016; 41 (01) 109-118
- 14 Zhu W, Zheng G, Yan X. et al. Diagnostic efficacy of [68Ga]Ga-NY104 PET/CT to identify clear cell renal cell carcinoma. Eur J Nucl Med Mol Imaging 2024; 51: 4127-4133
- 15 Hofman MS, Tran B, Feldman DR. et al. First-in-Human Safety, Imaging, and Dosimetry of a Carbonic Anhydrase IX-Targeting Peptide, [68Ga]Ga-DPI-4452, in Patients with Clear Cell Renal Cell Carcinoma. J Nucl Med 2024; 65: 741-743
- 16 Santagata S, Ieranò C, Trotta AM. et al. CXCR4 and CXCR7 Signaling Pathways: A Focus on the Cross-Talk Between Cancer Cells and Tumor Microenvironment. Front Oncol 2021; 11
- 17 Konrad M, Rinscheid A, Wienand G. et al. [99mTc]Tc-PentixaTec: development, extensive pre-clinical evaluation, and first human experience. Eur J Nucl Med Mol Imaging. Published online August 19, 2023 : 1–12.
- 18 Kircher M, Herhaus P, Schottelius M. et al. CXCR4-directed theranostics in oncology and inflammation. Ann Nucl Med 2018; 32: 503-511
- 19 Herrmann K, Schottelius M, Lapa C. et al. First-in-Human Experience of CXCR4-Directed Endoradiotherapy with 177Lu- and 90Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease. J Nucl Med 2016; 57: 248-251
- 20 Domanska UM, Kruizinga RC, Nagengast WB. et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 2013; 49: 219-230
- 21 Buck AK, Haug A, Dreher N. et al. Imaging of C-X-C Motif Chemokine Receptor 4 Expression in 690 Patients with Solid or Hematologic Neoplasms Using 68Ga-Pentixafor PET. J Nucl Med 2022; 63: 1687-1692
- 22 Dreher N, Hahner S, Fuß CT. et al. CXCR4-directed PET/CT with [68 Ga]Ga-pentixafor in solid tumors—a comprehensive analysis of imaging findings and comparison with histopathology. Eur J Nucl Med Mol Imaging 2024; 51
- 23 Vag T, Gerngross C, Herhaus P. et al. First experience with chemokine receptor CXCR4 Targeted PET imaging of patients with solid cancers. J Nucl Med 2016; 57: 741-6
- 24 Werner RA, Kircher S, Higuchi T. et al. CXCR4-directed imaging in solid tumors. Front Oncol 2019; 9: 770
- 25 Lapa C, Lückerath K, Rudelius M. et al. 68 Ga. Oncotarget 2016; 7: 9288-9295
- 26 Bluemel C, Hahner S, Heinze B. et al. Investigating the Chemokine Receptor 4 as Potential Theranostic Target in Adrenocortical Cancer Patients. Clin Nucl Med 2017; 42: e29-e34
- 27 Chen Z, Yang A, Chen A. et al. 68Ga]Pentixafor PET/CT for staging and prognostic assessment of newly diagnosed multiple myeloma: comparison to [18F. Eur J Nucl Med Mol Imaging 2024; 51: 1926-1936
- 28 Pan Q, Cao X, Luo Y. et al. Chemokine receptor-4 targeted PET/CT with 68Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: comparison to 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2020; 47: 537-546
- 29 Philipp-Abbrederis K, Herrmann K, Knop S. et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med 2015; 7: 477-487
- 30 Lapa C, Schreder M, Schirbel A. et al. 68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [18F. Theranostics 2017; 7: 212
- 31 Duell J, Buck AK, Hartrampf PE. et al. Chemokine Receptor PET/CT Provides Relevant Staging and Management Changes in Marginal Zone Lymphoma. J Nucl Med 2023; 64: 1889-1894
- 32 Kosmala A, Duell J, Schneid S. et al. Chemokine receptor–targeted PET/CT provides superior diagnostic performance in newly diagnosed marginal zone lymphoma patients: a head-to-head comparison with [18F]FDG. Eur J Nucl Med Mol Imaging 2023; 51: 749-755
- 33 Mayerhoefer ME, Raderer M, Lamm W. et al. CXCR4 PET/MRI for follow-up of gastric mucosa–associated lymphoid tissue lymphoma after first-line Helicobacter pylori eradication. Blood 2022; 139: 240-244
- 34 Mayerhoefer ME, Raderer M, Lamm W. et al. CXCR4 PET imaging of mantle cell lymphoma using [68Ga]Pentixafor: comparison with [18F]FDG-PET. Theranostics 2021; 11: 567-578
- 35 Luo Y, Cao X, Pan Q. et al. 68Ga-Pentixafor PET/CT for Imaging of Chemokine Receptor 4 Expression in Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma: Comparison to 18F-FDG PET/CT. J Nucl Med 2019; 60: 1724-1729
- 36 Kraus S, Dierks A, Rasche L. et al. 68Ga-Pentixafor PET/CT for Detection of Chemokine Receptor CXCR4 Expression in Myeloproliferative Neoplasms. J Nucl Med 2022; 63: 96-99
- 37 Mayerhoefer ME, Jaeger U, Staber P. et al. Ga-Pentixafor PET/MRI for CXCR4 Imaging of Chronic Lymphocytic Leukemia: Preliminary Results. Invest Radiol 2018; 53: 403-408
- 38 Lapa C, Herrmann K, Schirbel A. et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics 2017; 7: 1589-1597
- 39 Lapa C, Hänscheid H, Kircher M. et al. Feasibility of CXCR4-Directed Radioligand Therapy in Advanced Diffuse Large B-Cell Lymphoma. J Nucl Med 2019; 60: 60-64
- 40 Buck AK, Grigoleit GU, Kraus S. et al. C-X-C Motif Chemokine Receptor 4–Targeted Radioligand Therapy in Patients with Advanced T-Cell Lymphoma. J Nucl Med 2023; 64: 34-39
- 41 Habringer S, Lapa C, Herhaus P. et al. Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics 2018; 8: 383
- 42 Ullah TR. The role of CXCR4 in multiple myeloma: Cells’ journey from bone marrow to beyond. J Bone Oncol 2019; 17: 100253
- 43 Heinze B, Fuss CT, Mulatero P. et al. Targeting CXCR4 (CXC Chemokine Receptor Type 4) for molecular imaging of aldosterone-producing adenoma. Hypertension 2018; 71: 317-325
- 44 Gao Y, Ding J, Cui Y. et al. Functional nodules in primary aldosteronism: identification of CXCR4 expression with 68Ga-pentixafor PET/CT. Eur Radiol 2023; 33: 996-1003
- 45 Chaman Baz AH, Van De Wiel E, Groenewoud H. et al. CXCR4-directed [68Ga]Ga-PentixaFor PET/CT versus adrenal vein sampling performance: a study protocol for a randomised two-step controlled diagnoStic Trial Ultimately comparing hypertenSion outcome in primary aldosteronism (CASTUS). BMJ Open 2022; 12: e060779
- 46 Filmus J, Capurro M, Rast J. Glypicans. Genome Biol 2009; 9: 1-6
- 47 Esheba GE, Pate LL, Longacre TA. Oncofetal protein glypican-3 distinguishes yolk sac tumor from clear cell carcinoma of the ovary. Am J Surg Path 2008; 32: 600-607
- 48 Yamanaka K, Ito Y, Okuyama N. et al. Immunohistochemical Study of Glypican 3 in Thyroid Cancer. Oncol 2008; 73: 389-394
- 49 Zhou S, O’Gorman MRG, Yang F. et al. Glypican 3 as a Serum Marker for Hepatoblastoma. Sci Rep 2017; 7: 45932
- 50 Yorita K, Takahashi N, Takai H. et al. Prognostic significance of circumferential cell surface immunoreactivity of glypican-3 in hepatocellular carcinoma. Liver Int 2011; 31: 120-131
- 51 Kaseb AO, Hassan M, Lacin S. et al. Evaluating clinical and prognostic implications of Glypican-3 in hepatocellular carcinoma. Oncotarget 2016; 7: 69916-69926
- 52 Zhu AX, Gold PJ, El-Khoueiry AB. et al. First-in-man phase i study of GC33, a novel recombinant humanized antibody against glypican-3, in patients with advanced hepatocellular carcinoma. Clin Cancer Res 2013; 19: 920-928
- 53 Carrasquillo JA, O’Donoghue JA, Beylergil V. et al. I-124 codrituzumab imaging and biodistribution in patients with hepatocellular carcinoma. EJNMMI Res 2018; 8: 20
- 54 Poot AJ, Lapa C, Weber WA. et al. [68Ga]Ga-RAYZ-8009: A Glypican-3–Targeted Diagnostic Radiopharmaceutical for Hepatocellular Carcinoma Molecular Imaging—A First-in-Human Case Series. J Nucl Med 2024; 65: 1597-1603
- 55 Ambrosini V, Kunikowska J, Baudin E. et al. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. Eur J Cancer 2021; 146: 56-73
- 56 Günther T, Tulipano G, Dournaud P. et al. International union of basic and clinical pharmacology. CV. somatostatin receptors: Structure, function, ligands, and new nomenclature. Pharmacol Rev 2018; 70: 763-835
- 57 Singh S, Halperin D, Myrehaug S. et al. [177Lu]Lu-DOTA-TATE plus long-acting octreotide versus high dose long-acting octreotide for the treatment of newly diagnosed, advanced grade 2–3, well-differentiated, gastroenteropancreatic neuroendocrine tumours (NETTER-2): an open-label, randomised, phase 3 study. Lancet 2024; 403: 2807-2817
- 58 ITM Radiopharma. COMPETE Trial with ITM-11. Accessed April 27, 2025 at: https://www.itm-radiopharma.com/compete/
- 59 Perrin MH, Sutton SW, Cervini LA. et al. Comparison of an agonist, urocortin, and an antagonist, astressin, as radioligands for characterization of corticotropin-releasing factor receptors. J Pharmacol Exp Ther 1999; 288: 729-34
- 60 Reubi JC, Schär JC, Waser B. et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 2000; 27: 273-82
- 61 Ginj M, Zhang H, Waser B. et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 2006; 103: 16436-41
- 62 Nicolas GP, Schreiter N, Kaul F. et al. Sensitivity comparison of 68 Ga-OPS202 and 68 Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: A prospective phase II imaging study. J Nucl Med 2018; 59: 915-921
- 63 Nicolas GP, Beykan S, Bouterfa H. et al. Safety, biodistribution, and radiation dosimetry of 68 Ga-OPS202 in patients with gastroenteropancreatic neuroendocrine tumors: A prospective phase I imaging study. J Nucl Med. 2018; s59: 909-914
- 64 Lin Z, Zhu W, Zhang J. et al. Head-to-Head Comparison of 68Ga-NODAGA-JR11 and 68Ga-DOTATATE PET/CT in Patients with Metastatic, Well-Differentiated Neuroendocrine Tumors: Interim Analysis of a Prospective Bicenter Study. J Nucl Med 2023; 64: 1406-1411
- 65 Kersting D, Sandach P, Sraieb M. et al. 68Ga-SSO-120 PET for Initial Staging of Small Cell Lung Cancer Patients: A Single-Center Retrospective Study. J Nucl Med 2023; 64
- 66 Liebich A, Enke JS, Reitsam NG. et al. SSTR Antagonists as Theranostic Option in Small Cell Lung Cancer. Am J Respir Crit Care Med. Published online 2023.
- 67 Enke JS, Bundschuh RA, Wienand G. et al. Somatostatin receptor antagonists as a theranostic option in iodine-refractory thyroid carcinoma. Journal of Nuclear Medicine 2023; 64
- 68 Kircher M, Amerein A, Augustin M. et al. SSTR Antagonists as Theranostic Option in Merkel Cell Carcinoma. Journal of Nuclear Medicine 2024; 65
- 69 Singh A, Kulkarni H, Langbein T. et al. PET/CT imaging of somatostatin receptor expressing solid tumors with the novel somatotostatin receptor antagonist 68Ga-NODAGA-LM3. Journal of Nuclear Medicine 2018; 59: 42
- 70 Singh A, Zhang J, Kulkarni H. et al. First-in-human study of a novel somatostatin receptor antagonist 68Ga-NODAGA-LM3 for molecular imaging of paraganglioma patients. Journal of Nuclear Medicine 2019; 60: 339
- 71 Liu M, Cheng Y, Bai C. et al. Gallium-68 labeled somatostatin receptor antagonist PET/CT in over 500 patients with neuroendocrine neoplasms: experience from a single center in China. Eur J Nucl Med Mol Imaging 2024; 51
- 72 Nicolas GP, Mansi R, McDougall L. et al. Biodistribution, pharmacokinetics, and dosimetry of 177Lu-,90Y-, and 111In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist 177Lu-DOTATATE: The mass effect. J Nucl Med 2017; 58
- 73 Dalm SU, Nonnekens J, Doeswijk GN. et al. Comparison of the therapeutic response to treatment with a 177Lu-labeled somatostatin receptor agonist and antagonist in preclinical models. J Nucl Med 2016; 57
- 74 Wild D, Fani M, Fischer R. et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: A pilot study. J Nucl Med 2014; 55
- 75 Fani M, Mansi R, Nicolas GP. et al. Radiolabeled Somatostatin Analogs—A Continuously Evolving Class of Radiopharmaceuticals. Cancers (Basel) 2022; 14
- 76 Reidy-Lagunes D, Pandit-Taskar N, O’Donoghue JA. et al. Phase I Trial of Well-Differentiated Neuroendocrine Tumors (NETs) with Radiolabeled Somatostatin Antagonist 177Lu-Satoreotide Tetraxetan. Clin Cancer Res 2019; 25
- 77 Oomen SPMA, Van Hennik PB, Antonissen C. et al. Somatostatin is a selective chemoattractant for primitive (CD34+) hematopoietic progenitor cells. Exp Hematol 2002; 30
- 78 Wild D, Grønbæk H, Navalkissoor S. et al. A phase I/II study of the safety and efficacy of [177Lu]Lu-satoreotide tetraxetan in advanced somatostatin receptor-positive neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2023; 51
- 79 Eigler C, McDougall L, Bauman A. et al. Radiolabeled Somatostatin Receptor Antagonist Versus Agonist for Peptide Receptor Radionuclide Therapy in Patients with Therapy-Resistant Meningioma: PROMENADE Phase 0 Study. J Nucl Med 2024; 65
- 80 Jaekel A, Desai P, Gericke G. et al. [225Ac]Ac-SSO110 and [177Lu]Lu-SSO110 demonstrate significantly better efficacy than [225Ac]Ac-DOTA-TATE in the treatment of SST2-positive tumor xenografts. J Nucl Med 2024; 65: 242038-242038
- 81 Baum RP, Zhang J, Schuchardt C. et al. First-in-human study of novel SSTR antagonist 177Lu-DOTA-LM3 for peptide receptor radionuclide therapy in patients with metastatic neuroendocrine neoplasms: Dosimetry, safety and efficacy. J Nucl Med 2021; 62
- 82 Perrone E, Ghai K, Eismant A. et al. Impressive Response to TANDEM Peptide Receptor Radionuclide Therapy with 177Lu/225AcDOTA-LM3 Somatostatin Receptor Antagonist in a Patient with Therapy-Refractory, Rapidly Progressive Neuroendocrine Neoplasm of the Pancreas. Diagnostics 2024; 14: 907
- 83 Fricke J, Westerbergh F, McDougall L. et al. First-in-human administration of terbium-161-labelled somatostatin receptor subtype 2 antagonist ([161Tb]Tb-DOTA-LM3) in a patient with a metastatic neuroendocrine tumour of the ileum. Eur J Nucl Med Mol Imaging 2024; 51
- 84 Busslinger SD, Mapanao AK, Kegler K. et al. Comparison of the tolerability of 161Tb- and 177Lu-labeled somatostatin analogues in the preclinical setting. Eur J Nucl Med Mol Imaging. Published online July 24, 2024:1–13.
- 85 Borgna F, Haller S, Rodriguez JMM. et al. Combination of terbium-161 with somatostatin receptor antagonists—a potential paradigm shift for the treatment of neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging 2022; 49
- 86 Van Kruchten M, Glaudemans AWJM, De Vries EFJ. et al. PET imaging of estrogen receptors as a diagnostic tool for breast cancer patients presenting with a clinical dilemma. J Nucl Med 2012; 53
- 87 Katzenellenbogen JA. The quest for improving the management of breast cancer by functional imaging: The discovery and development of 16α-[18F]fluoroestradiol (FES), a PET radiotracer for the estrogen receptor, a historical review. Nucl Med Biol 2021; 92
- 88 Mintun MA, Welch MJ, Siegel BA. et al. Breast cancer: PET imaging of estrogen receptors. Radiology 1988; 169 (01) 45-48
- 89 NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Guideline Breast Cancer V.4.2024. National Comprehensive Cancer Network, Inc. 2024. All rights reserved. Accessed [August 29, 2024]. Accessed August 29, 2024 at: https://www.NCCN.org
- 90 Linden HM, Peterson LM, Fowler AM. Clinical Potential of Estrogen and Progesterone Receptor Imaging. PET Clin 2018; 13: 415-422
- 91 Mankoff DA, Tewson TJ, Eary JF. Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16α-Fluorestradiol (FES). Nucl Med Biol 1997; 24: 341-348
- 92 Venema CM, de Vries EFJ, van der Veen SJ. et al. Enhanced pulmonary uptake on 18F-FES-PET/CT scans after irradiation of the thoracic area: related to fibrosis?. EJNMMI Res 2019; 9
- 93 Telugu RB, Chowhan AK, Rukmangadha N. et al. Estrogen and progesterone receptor in meningiomas: An immunohistochemical analysis. J Cancer Res Ther 2020; 16
- 94 Tsujikawa T, Yoshida Y, Mori T. et al. Uterine tumors: Pathophysiologic imaging with 16α-[ 18F]fluoro-17beta-estradiol and 18F fluorodeoxyglucose PET - Initial experience. Radiology 2008; 248
- 95 Linden HM, Stekhova SA, Link JM. et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 2006; 24
- 96 Mortimer JE, Dehdashti F, Siegel BA. et al. Metabolic flare: Indicator of hormone responsiveness in advanced breast cancer. Journal of Clinical Oncology 2001; 19
- 97 U.S. Food and Drug Administration, 2020. Drug Approval Package: CERIANNA. Accessed August 23, 2024 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212155s000lbl.pdf
- 98 Linden HM, Kurland BF, Peterson LM. et al. Fluoroestradiol positron emission tomography reveals differences in pharmacodynamics of aromatase inhibitors, tamoxifen, and fulvestrant in patients with metastatic breast cancer. Clin Canc Res 2011; 17
- 99 Howlader N, Altekruse SF, Li CI. et al. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst 2014; 106
- 100 Gennari A, Brain E, De Censi A. et al. Early prediction of endocrine responsiveness in ER+/HER2-negative metastatic breast cancer (MBC): pilot study with 18F-fluoroestradiol (18F-FES) CT/PET. Ann Oncol 2024; 35
- 101 Xie Y, Du X, Zhao Y. et al. Chemotherapy Shows a Better Efficacy Than Endocrine Therapy in Metastatic Breast Cancer Patients with a Heterogeneous Estrogen Receptor Expression Assessed by 18F-FES PET. Cancers (Basel) 2022; 14
- 102 Kurland BF, Wiggins JR, Coche A. et al. Whole-Body Characterization of Estrogen Receptor Status in Metastatic Breast Cancer with 16α-18F-Fluoro-17β-Estradiol Positron Emission Tomography: Meta-Analysis and Recommendations for Integration into Clinical Applications. Oncologist 2020; 25
- 103 Sun Y, Yang Z, Zhang Y. et al. The preliminary study of 16 α-[18F] fluoroestradiol PET/CT in assisting the individualized treatment decisions of breast cancer patients. PLoS One 2015; 10
- 104 Boers J, Loudini N, Brunsch CL. et al. Value of 18F-FES PET in Solving Clinical Dilemmas in Breast Cancer Patients: A Retrospective Study. J Nucl Med 2021; 62
- 105 Park JH, Kang MJ, Ahn JH. et al. Phase II trial of neoadjuvant letrozole and lapatinib in Asian postmenopausal women with estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2)-positive breast cancer [Neo-ALL-IN]: Highlighting the TILs, ER expressional change after neoadjuvant treatment, and FES-PET as potential significant biomarkers. Cancer Chemother Pharmacol 2016; 78
- 106 Kurland BF, Peterson LM, Lee JH. et al. Estrogen receptor binding (18F-FES PET) and glycolytic activity (18F-FDG PET) predict progression-free survival on endocrine therapy in patients with ER+ breast cancer. Clin Canc Res 2017; 23
- 107 Ulaner GA, Jhaveri K, Chandarlapaty S. et al. Head-to-Head Evaluation of 18F-FES and 18F-FDG PET/CT in Metastatic Invasive Lobular Breast Cancer. J Nucl Med 2021; 62
- 108 Crippa F, Seregni E, Agresti R. et al. Association between [18F]fluorodeoxyglucose uptake and postoperative histopathology, hormone receptor status, thymidine labelling index and p53 in primary breast cancer: A preliminary observation. Eur J Nucl Med 1998; 25
- 109 Covington MF, Hoffman JM, Morton KA. et al. Prospective Pilot Study of 18F-Fluoroestradiol PET/CT in Patients With Invasive Lobular Carcinomas. Am J Roentgenol 2023; 221
- 110 Mankoff D, Balogova S, Dunnwald L. et al. Summary: SNMMI Procedure Standard/EANM Practice Guideline for Estrogen Receptor Imaging of Patients with Breast Cancer Using 16a-[18F]Fluoro-17b-Estradiol PET. J Nucl Med 2024; 65
- 111 von Guggenberg E, Kolenc P, Rottenburger C. et al. Update on preclinical development and clinical translation of cholecystokinin-2 receptor targeting radiopharmaceuticals. Cancers (Basel) 2021; 13
- 112 Viering O, Günther T, Holzleitner N. et al. CCK2 Receptor–Targeted PET/CT in Medullary Thyroid Cancer Using [68Ga]Ga-DOTA-CCK-66. J Nucl Med 2024; 65
- 113 Günther T, Holzleitner N, Viering O. et al. Preclinical Evaluation of Minigastrin Analogs and Proof-of-Concept [68Ga]Ga-DOTA-CCK-66 PET/CT in 2 Patients with Medullary Thyroid Cancer. J Nucl Med 2024; 65
- 114 Viering O, Rinscheid A, Holzleitner N. et al. Biodistribution and Radiation Dosimetry for 68Ga-DOTA-CCK-66, a Novel CCK2R-Targeting Compound for Imaging of Medullary Thyroid Cancer. Clin Nucl Med. Published online August 2, 2024.
- 115 Dalm S, Duan H, Iagaru A. Gastrin Releasing Peptide Receptors-targeted PET Diagnostics and Radionuclide Therapy for Prostate Cancer Management: Preclinical and Clinical Developments of the Past 5 Years. PET Clin 2024; 19: 401-415
- 116 Koller L, Joksch M, Schwarzenböck S. et al. Preclinical Comparison of the 64Cu- and 68Ga-Labeled GRPR-Targeted Compounds RM2 and AMTG, as Well as First-in-Humans [68Ga]Ga-AMTG PET/CT. J Nucl Med 2023; 64
- 117 Holzleitner N, Cwojdzinski T, Beck R. et al. Preclinical Evaluation of Gastrin-Releasing Peptide Receptor Antagonists Labeled with 161Tb and 177Lu: A Comparative Study. J Nucl Med 2024; 65
- 118 Liolios C, Sachpekidis C, Kolocouris A. et al. PET diagnostic molecules utilizing multimeric cyclic rgd peptide analogs for imaging integrin αvβ3 receptors. Molecules 2021; 26
- 119 Yerrabelli RS, He P, Fung EK. et al. IntraOmmaya compartmental radioimmunotherapy using 131I-omburtamab—pharmacokinetic modeling to optimize therapeutic index. Eur J Nucl Med Mol Imaging 2021; 48
- 120 Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol 2017; 8
- 121 Kim C, Subramaniam D, Liu S. et al. P2.12–03 Phase I/II Trial Of 177Lu-DOTA0-Tyr3-Octreotate (Lutathera) And Nivolumab for Patients with Extensive-Stage Small Cell Lung Cancer (ES-SCLC). J Thor Oncol 2018; 13
- 122 Tagawa ST, Osborne J, Dallos M. et al. Phase I/II trial of pembrolizumab and AR signaling inhibitor +/- 225Ac-J591 for chemo-naive metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 2022; 40
- 123 Kim C, Liu S V., Subramaniam DS. et al. Phase I study of the 177Lu-DOTA0-Tyr3-Octreotate (lutathera) in combination with nivolumab in patients with neuroendocrine tumors of the lung. J Immunother Cancer 2020; 8