Subscribe to RSS
DOI: 10.1055/a-2509-5596
Intraoperatives Neuromonitoring bei spinalen operativen Eingriffen – ein Update

Die Methoden des intraoperativen Neuromonitorings (IONM) haben sich bei komplexen intraduralen Wirbelsäuleneingriffen etabliert. Aufgrund der personal- und kostenintensiven Anwendung sowie der Schwierigkeit, intraoperative Signalveränderungen in den Kontext von operativem Ablauf und konkretem neurologischem Outcome zu setzen, wird der Einsatz bei anderen, weniger komplexen Wirbelsäuleneingriffen kontrovers diskutiert. Der Artikel stellt die Wertigkeit und den Nutzen des IONM in der Wirbelsäulenchirurgie dar.
Abstract
The methods of intraoperative neuromonitoring (IONM) have become established in spine surgery, particularly in complex intradural procedures. However, the benefits remain the subject of controversial debate, especially in the context of non-complex or less complex spinal surgery. This is not only due to the high personnel demands and procedure-related costs, but also reflects the difficulty of interpreting intraoperative signal changes in relation to the surgical procedure and translating them directly into clinical outcome predictions. This article presents the value and benefits of IONM in spine surgery based on case studies and highlighting its pros and cons.
Publication History
Article published online:
01 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Deutsche Wirbelsäulengesellschaft DWG. et al. S2k-Leitlinie Adoleszente Idiopathische Skoliose. AWMF-Register Nr. 151/002 (15.3.2023) https://register.awmf.org/de/leitlinien/detail/151-002 Stand: 03.07.2025
- 2 Siller S, Raith C, Zausinger S. et al. Indication and technical implementation of the intraoperative neurophysiological monitoring during spine surgeries-a transnational survey in the German-speaking countries. Acta Neurochir (Wien) 2019; 161: 1865-1875
- 3 Neurochirurgische Akademie (NCA). Personenzertifikat Intraoperatives Neurophysiologisches Monitoring (2021). Zugriff am 27.06.2025 unter: https://www.nc-akademie.de/index.php?id=3793
- 4 Deutsche Gesellschaft für Klinische Neurophysiologie. Zertifikat Intraoperatives Neuromonitoring (2023). Zugriff am 27.06.2025 unter: https://dgkn.de/fuer-experten/ionm
- 5 Bhagat S, Durst A, Grover H. et al. An evaluation of multimodal spinal cord monitoring in scoliosis surgery: a single centre experience of 354 operations. Eur Spine J 2015; 24: 1399-1407
- 6 Thirumala PD, Crammond DJ, Loke YK. et al. Diagnostic accuracy of motor evoked potentials to detect neurological deficit during idiopathic scoliosis correction: a systematic review. J Neurosurg Spine 2017; 26: 374-383
- 7 MacDonald DB, Dong C, Quatrale R. et al. Recommendations of the International Society of Intraoperative Neurophysiology for intraoperative somatosensory evoked potentials. Clin Neurophysiol 2019; 130: 161-179
- 8 Legatt AD, Emerson RG, Epstein CM. et al. ACNS guideline: transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 2016; 33: 42-50
- 9 Szelenyi A. Spinales Neuromonitoring. In: Rauschmann MA, Josten C, Meyer B, Bernhard, Hrsg. Referenz Wirbelsäule. Stuttgart: Thieme Verlag; 2025: 885-891 ;
- 10 Skinner SA, Vodušek DB. Intraoperative recording of the bulbocavernosus reflex. J Clin Neurophysiol 2014; 31: 313-322
- 11 Silverstein JW, Block J, Olmsted ZT. et al. Intraoperative monitoring of the external urethral sphincter reflex: a novel adjunct to bulbocavernosus reflex neuromonitoring for protecting the sacral neural pathways responsible for urination, defecation and sexual function. J Clin Neurophysiol 2024; 41: 558-564
- 12 Lyon R, Feiner J, Lieberman JA. Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade”. J Neurosurg Anesthesiol 2005; 17: 13-19
- 13 Kawaguchi M, Sakamoto T, Inoue S. et al. Low dose propofol as a supplement to ketamine-based anesthesia during intraoperative monitoring of motor-evoked potentials. Spine (Phila Pa 1976) 2000; 25: 974-979
- 14 Schirmer CM, Shils JL, Arle JE. et al. Heuristic map of myotomal innervation in humans using direct intraoperative nerve root stimulation. J Neurosurg Spine 2011; 15: 64-70
- 15 Vitale MG, Skaggs DL, Pace GI. et al. Best practices in intraoperative neuromonitoring in spine deformity surgery: development of an intraoperative checklist to optimize response. Spine Deform 2014; 2: 333-339
- 16 Haynes AB, Weiser TG, Berry WR. et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med 2009; 360: 491-499
- 17 De la Garza Ramos R, Scheer JK, Matmati N. et al. Development of the scoliosis research society spinal deformity surgery safety checklist. Spine Deform 2025; 13: 327-338
- 18 Kulkarni AG, Patel JY, Asati S. et al. “Spine Surgery Checklist”: a step towards perfection through protocols. Asian Spine J 2022; 16: 38-46
- 19 Ajiboye RM, Zoller SD, Sharma A. et al. Intraoperative neuromonitoring for anterior cervical spine surgery: what is the evidence?. Spine (Phila Pa 1976) 2017; 42: 385-393
- 20 Spitz S, Felbaum D, Aghdam N. et al. Delayed postoperative C5 root palsy and the use of neurophysiologic monitoring. Eur Spine J 2015; 24: 2866-2871
- 21 Ney JP, van der Goes DN, Nuwer MR. Does intraoperative neurophysiologic monitoring matter in noncomplex spine surgeries?. Neurology 2015; 85: 2151-2158
- 22 Kombos T, Suess O, Da Silva C. et al. Impact of somatosensory evoked potential monitoring on cervical surgery. J Clin Neurophysiol 2003; 20: 122-128
- 23 Macdonald DB. Optimizing tibial P37 somatosensory evoked potentials for intraoperative monitoring. Neurosciences (Riyadh) 2005; 10: 116-117
- 24 Zdunczyk A, Schwarzer V, Mikhailov M. et al. The corticospinal reserve capacity: reorganization of motor area and excitability as a novel pathophysiological concept in cervical myelopathy. Neurosurgery 2018; 83: 810-818
- 25 Appel S, Korn A, Biron T. et al. Efficacy of head repositioning in restoration of electrophysiological signals during cervical spine procedures. J Clin Neurophysiol 2017; 34: 174-178
- 26 MacDonald DB. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 2002; 19: 416-429
- 27 Thirumala PD, Muralidharan A, Loke YK. et al. Value of intraoperative neurophysiological monitoring to reduce neurological complications in patients undergoing anterior cervical spine procedures for cervical spondylotic myelopathy. J Clin Neurosci 2016; 25: 27-35
- 28 Halsey MF, Myung KS, Ghag A. et al. Neurophysiological monitoring of spinal cord function during spinal deformity surgery: 2020 SRS neuromonitoring information statement. Spine Deform 2020; 8: 591-596
- 29 Modi HN, Suh SW, Yang JH. et al. False-negative transcranial motor-evoked potentials during scoliosis surgery causing paralysis: a case report with literature review. Spine (Phila Pa 1976) 2009; 34: E896-E900
- 30 Burton DC, Carlson BB, Place HM. et al. Results of the scoliosis research society morbidity and mortality database 2009-2012: a report from the Morbidity and Mortality Committee. Spine Deform 2016; 4: 338-343
- 31 Kothbauer KF, Deletis V, Epstein FJ. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 1998; 4: e1
- 32 MacDonald DB, Skinner S, Shils J. et al Intraoperative motor evoked potential monitoring - A position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol 2013; 2291-2316
- 33 Ulkatan S, Neuwirth M, Bitan F. et al. Monitoring of scoliosis surgery with epidurally recorded motor evoked potentials (D wave) revealed false results. Clin Neurophysiol 2006; 117: 2093-2101
- 34 Alvi MA, Kwon BK, Hejrati N. et al. Accuracy of intraoperative neuromonitoring in the diagnosis of intraoperative neurological decline in the setting of spinal surgery – a systematic review and meta-analysis. Global Spine J 2024; 14: 105s-149s
- 35 Holdefer RN, Skinner SA. Motor evoked potential recovery with surgeon interventions and neurologic outcomes: a meta-analysis and structural causal model for spine deformity surgeries. Clin Neurophysiol 2020; 131: 1556-1566