Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000144.xml
Zeitschrift für Orthomolekulare Medizin 2025; 23(01): 22-29
DOI: 10.1055/a-2546-7308
DOI: 10.1055/a-2546-7308
Wissen
Bedeutung von NAD für Vitalität, Alterung und Langlebigkeit

Zusammenfassung
Nicotinamid-Adenin-Dinukleotid (NAD) spielt als essenzielles Coenzym eine zentrale Rolle im zellulären Energiestoffwechsel. Darüber hinaus beeinflusst und steuert NAD weitere physiologische Prozesse, die für Gesundheit, Vitalität und eine hohe Langlebigkeit (Longevity) maßgeblich sind. Die Bestimmung der NAD-Spiegel kann für die individualisierte Diagnostik metabolischer, immunologischer oder mitochondrialer Dysfunktionen äußerst hilfreich sein und die Basis für die Erstellung personalisierter Therapiekonzepte darstellen.
Schlüsselwörter
NAD+ - NADH - Mitochondrien - ATP-Synthese - Sirtuine - Longevity - Seneszenz - NAD-Mangel - NAD-BiosynthesePublication History
Article published online:
22 April 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Gröber U. NAD+ – ein alter Bekannter aus den Anfängen der Orthomolekularen Medizin. Zs f Orthomol Med 2023; 21: 36-41
- 2 Alemasova EE, Lavrik OI. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res 2019; 47: 3811-3827
- 3 Murata MM. et al. NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell 2019; 30: 2584-2597
- 4 Gupte R. et al. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 2017; 31: 101-126
- 5 Wu QJ. et al. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7: 402
- 6 Hsu WW. et al. Sirtuins 1 and 2 are universal histone deacetylases. ACS Chem Biol 2016; 11: 792-799
- 7 Michan S. Calorie restriction and NAD+/sirtuin counteract the hallmarks of aging. Front Biosci (Landmark Ed) 2014; 19: 1300-1319
- 8 Poljsak B. et al. Healthy lifestyle recommendations: do the beneficial effects originate from NAD+ amount at the cellular level?. Oxid Med Cell Longev 2020; 2020: 8819627
- 9 Zhou S. et al. Sirtuins and insulin resistance. Front Endocrinol 2018; 9: 748
- 10 Gámez-García A, Vazquez BN. Nuclear sirtuins and the aging of the immune system. Genes 2021; 12: 1856
- 11 Cardus A. et al. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res 2013; 97: 571-579
- 12 Xu H. et al. Sirtuins at the crossroads between mitochondrial quality control and neurodegenerative diseases: structure, regulation, modifications, and modulators. Aging Dis 2023; 14: 794-824
- 13 Massudi H. et al. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 2012; 7: e42357
- 14 Groth B. et al. NAD+ metabolism, metabolic stress, and infection. Front Mol Biosci 2021; 8: 686412
- 15 Imai SI. Nicotinamide phosphoribosyltransferase (Nampt): A link between NAD biology, metabolism, and diseases. Curr Pharm Des 2009; 15: 20-28
- 16 Peng A. et al. The function of nicotinamide phosphoribosyl transferase (NAMPT) and its role in diseases. Front Mol Biosci 2024; 11: 1480617
- 17 Chini CC. et al. NAD and the aging process: Role in life, death and everything in between. Mol Cell Endocrinol 2017; 455: 62-74
- 18 Imai S, Yoshino J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obes Metab 2013; 15: 26-33
- 19 Li F, Wu C, Wang G. Targeting NAD metabolism for the therapy of age-related neurodegenerative diseases. Neurosci Bull 2024; 40: 218-240
- 20 Amici SA. et al. CD38 is robustly induced in human macrophages and monocytes in inflammatory conditions. Front Immunol 2018; 9: 1593
- 21 Covarrubias AJ. et al. Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nat Metab 2020; 2: 1265-1283
- 22 Chini CC. et al. CD38 ecto-enzyme in immune cells is induced during aging regulating NAD+ and NMN levels. Nat Metab 2020; 2: 1284-1304
- 23 Chini C. et al. The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD+ decline. Biochem Biophys Res Comm 2019; 513: 486-493
- 24 Amjad S. et al. Role of NAD+ in regulating cellular and metabolic signaling pathways. Mol Metab 2021; 49: 101195
- 25 Gomes AP. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013; 155: 1624-1638
- 26 Dehhaghi M. et al. The role of kynurenine pathway and NAD+ metabolism in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Aging Dis 2022; 13: 698-711
- 27 Block T, Kuo J. Rationale for nicotinamide adenine dinucleotide (NAD+) metabolome disruption as a pathogenic mechanism of post-acute COVID-19 syndrome. Clin Pathol 2022; 15 2632010X221106986
- 28 Wu J. et al. Sources and implications of NADH/NAD+ redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes 2016; 9: 145-153
- 29 Cortés-Rojo C. et al. Interplay between NADH oxidation by complex I, glutathione redox state and sirtuin-3, and its role in the development of insulin resistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866: 165801
- 30 Abdellatif M. et al. NAD+ and vascular dysfunction: from mechanisms to therapeutic opportunities. J Lipid Atheroscler 2022; 11: 111-132
- 31 Lin Q. et al. NAD+ and cardiovascular diseases. Clin Chim Acta 2021; 515: 104-110
- 32 Migliavacca E. et al. Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human sarcopenia across ethnicities. Nat Commun 2019; 20: 5808
- 33 Gudenschwager C. et al. Directly reprogrammed human neurons to understand age-related energy metabolism impairment and mitochondrial dysfunction in healthy aging and neurodegeneration. Oxid Med Cell Longev 2021; 2021: 5586052
- 34 Choi EH. et al. Targeting mitochondrial dysfunction and reactive oxygen species for neurodegenerative disease treatment. Int J Mol Sci 2024; 25: 7952
- 35 Lautrup S. et al. NAD+ in brain aging and neurodegenerative disorders. Cell Metab 2019; 30: 630-655
- 36 Hosseini L. et al. Protective effects of nicotinamide adenine dinucleotide and related precursors in Alzheimer's disease: a systematic review of preclinical studies. J Mol Neurosci 2021; 71: 1425-1435
- 37 Berven H. et al. NR-SAFE: a randomized, double-blind safety trial of high dose nicotinamide riboside in Parkinson’s disease. Nat Commun 2023; 14: 7793
- 38 Orr ME. et al. A randomized placebo-controlled trial of nicotinamide riboside in older adults with mild cognitive impairment. Geroscience 2024; 46: 66-82
- 39 Fang J. et al. NAD+ metabolism-based immunoregulation and therapeutic potential. Cell Biosci 2023; 13: 81
- 40 Navarro MN. et al. Nicotinamide adenine dinucleotide metabolism in the immune response, autoimmunity and inflammageing. Br J Pharmacol 2022; 179: 1839-1856
- 41 Covarrubias AJ. et al. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 2021; 22: 119-141
- 42 Makarov MV. et al. The chemistry of the vitamin B3 metabolome. Biochem Soc Trans 2019; 47: 131-147
- 43 Freese R, Lysne V. Niacin – a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67: 10299
- 44 Wie Z. et al. Caloric restriction, sirtuins, and cardiovascular diseases. Chin Med J 2024; 137: 921-935
- 45 Levine DC. et al. NAD+ controls circadian reprogramming through PER2 nuclear translocation to counter aging. Mol Cell 2020; 78: 835-849
- 46 Reiten OK. et al. Preclinical and clinical evidence of NAD+ precursors in health, disease, and ageing. Mech Ageing Dev 2021; 199: 111567
- 47 Canto C. NAD+ precursors: a questionable redundancy. Metabolites 2022; 12: 630
- 48 Liu Y. et al. Quantitation of NAD+: why do we need to measure it?. Biochim Biophys Acta Gen Subj 2018; 1862: 2527-2532
- 49 Beltrà M. et al. NAD+ repletion with niacin counteracts cancer cachexia. Nat Commun 2023; 14: 1849