Neuropediatrics
DOI: 10.1055/a-2561-8303
Review Article

Bornavirus (BoDV-1) Encephalitis in Children: Update on Diagnosis and Treatment

Victoria Lieftüchter
1   Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
2   Department of Pediatric Neurology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
,
Yannik Vollmuth
1   Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
,
1   Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
2   Department of Pediatric Neurology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
,
Florian Hoffmann
1   Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
,
Marco Paolini
3   Department of Radiology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
,
Tom Finck
4   Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Friederike Liesche-Starnecker
5   Department of Pathology, Medical Faculty, University of Augsburg, Germany
,
Ulrich von Both
6   Department of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
,
Kirsten Pörtner
7   Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
,
Dennis Tappe
8   Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
,
Leonie Grosse
2   Department of Pediatric Neurology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
› Author Affiliations
Funding None.

Abstract

Infectious encephalitis in children can be caused by several pathogens, very rarely this can be caused by bornaviruses (BoDV-1). Due to the recent discovery of the disease in humans and the small number of cases, especially pediatric infections, knowledge about the disease pathology as well as therapeutic options is limited. Therefore, this review shall help raise awareness of this rare and mostly fatal disease, promote an early diagnosis, and present current knowledge about possible treatment options.



Publication History

Received: 11 July 2024

Accepted: 15 March 2025

Article published online:
14 April 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Schlottau K, Forth L, Angstwurm K. et al. Fatal encephalitic Borna disease virus 1 in solid-organ transplant recipients. N Engl J Med 2018; 379 (14) 1377-1379
  • 2 Korn K, Coras R, Bobinger T. et al. Fatal encephalitis associated with Borna disease virus 1. N Engl J Med 2018; 379 (14) 1375-1377
  • 3 Dürrwald R, Ludwig H. Borna disease virus (BDV), a (zoonotic?) worldwide pathogen. A review of the history of the disease and the virus infection with comprehensive bibliography. Zentralbl Veterinärmed B 1997; 44 (03) 147-184
  • 4 Autenrieth CF. Ueber die hitzige Kopfkrankheit der Pferde: auf Verlangen des Münsinger-Vereins zur Beförderung der Pferdezucht auf der Alp, und zunächst für diese Gegend. 1823. Tübingen Heinrich Laupp;
  • 5 Robert Koch-Institut. Humane Infektion mit dem Borna Disease Virus 1. [cited 2024 02.05.]. Accessed 2024 at: https://www.rki.de/DE/Content/InfAZ/B/Bornavirus/Merkblatt.pdf?__blob=publicationFile
  • 6 Meyer T. et al. Borna disease virus 1“(BoDV-1)-Enzephalitis eines 18-Jährigen außerhalb des bisher bekannten Endemiegebietes. DGNeurologie 2022; 5 (04) 300-304
  • 7 Pörtner K, Wilking H, Frank C, Böhmer MM, Stark K, Tappe D. Risk factors for Borna disease virus 1 encephalitis in Germany - a case-control study. Emerg Microbes Infect 2023; 12 (01) e2174778
  • 8 Dürrwald R, Kolodziejek J, Weissenböck H, Nowotny N. The bicolored white-toothed shrew Crocidura leucodon (HERMANN 1780) is an indigenous host of mammalian Borna disease virus. PLoS One 2014; 9 (04) e93659
  • 9 Nobach D, Bourg M, Herzog S. et al. Shedding of infectious borna disease virus-1 in living bicolored white-toothed shrews. PLoS One 2015; 10 (08) e0137018
  • 10 Weissenböck H, Bagó Z, Kolodziejek J. et al. Infections of horses and shrews with Bornaviruses in Upper Austria: a novel endemic area of Borna disease. Emerg Microbes Infect 2017; 6 (06) e52
  • 11 Gosztonyi G. Natural and experimental Borna disease virus infections–neuropathology and pathogenetic considerations. APMIS Suppl 2008; (124) 53-57
  • 12 Grosse L, Lieftüchter V, Vollmuth Y. et al. First detected geographical cluster of BoDV-1 encephalitis from same small village in two children: therapeutic considerations and epidemiological implications. Infection 2023; 51 (05) 1383-1398
  • 13 Jacobsen B, Algermissen D, Schaudien D. et al. Borna disease in an adult alpaca stallion (Lama pacos). J Comp Pathol 2010; 143 (2–3): 203-208
  • 14 Priestnall SL, Schöniger S, Ivens PA. et al. Borna disease virus infection of a horse in Great Britain. Vet Rec 2011; 168 (14) 380b
  • 15 Hilbe M, Herrsche R, Kolodziejek J, Nowotny N, Zlinszky K, Ehrensperger F. Shrews as reservoir hosts of Borna disease virus. Emerg Infect Dis 2006; 12 (04) 675-677
  • 16 Rubbenstroth D, Schlottau K, Schwemmle M, Rissland J, Beer M. Human bornavirus research: Back on track!. PLoS Pathog 2019; 15 (08) e1007873
  • 17 Portner K. et al. Clinical analysis of Bornavirus Encephalitis cases demonstrates a small time window for etiological diagnostics and treatment attempts, a large case series from Germany 1996–2022. Infection 2024; 53 (01) 155-164
  • 18 Liesche F, Ruf V, Zoubaa S. et al. The neuropathology of fatal encephalomyelitis in human Borna virus infection. Acta Neuropathol 2019; 138 (04) 653-665
  • 19 Finck T, Liesche-Starnecker F, Probst M. et al; Bornavirus-Encephalitis Study Group. Bornavirus encephalitis shows a characteristic magnetic resonance phenotype in humans. Ann Neurol 2020; 88 (04) 723-735
  • 20 Allartz P. et al. Detection of bornavirus-reactive antibodies and BoDV-1 RNA only in encephalitis patients from virus endemic areas: a comparative serological and molecular sensitivity, specificity, predictive value, and disease duration correlation study. Infection 2023; 52: 1-13
  • 21 Frank C, Wickel J, Brämer D. et al. Human Borna disease virus 1 (BoDV-1) encephalitis cases in the north and east of Germany. Emerg Microbes Infect 2022; 11 (01) 6-13
  • 22 Bauswein M, Eidenschink L, Knoll G. et al. Human infections with Borna disease virus 1 (BoDV-1) primarily lead to severe encephalitis: further evidence from the seroepidemiological BoSOT study in an endemic region in Southern Germany. Viruses 2023; 15 (01) 188
  • 23 Dürrwald R, Kolodziejek J, Herzog S, Nowotny N. Meta-analysis of putative human bornavirus sequences fails to provide evidence implicating Borna disease virus in mental illness. Rev Med Virol 2007; 17 (03) 181-203
  • 24 Schwemmle M, Jehle C, Formella S, Staeheli P. Sequence similarities between human bornavirus isolates and laboratory strains question human origin. Lancet 1999; 354 (9194) 1973-1974
  • 25 Eisermann P, Rubbenstroth D, Cadar D. et al. Active case finding of current bornavirus infections in human encephalitis cases of unknown etiology, Germany, 2018-2020. Emerg Infect Dis 2021; 27 (05) 1371-1379
  • 26 Stitz L, Planz O, Bilzer T, Frei K, Fontana A. Transforming growth factor-beta modulates T cell-mediated encephalitis caused by Borna disease virus. Pathogenic importance of CD8+ cells and suppression of antibody formation. J Immunol 1991; 147 (10) 3581-3586
  • 27 Hausmann J, Hallensleben W, de la Torre JC. et al. T cell ignorance in mice to Borna disease virus can be overcome by peripheral expression of the viral nucleoprotein. Proc Natl Acad Sci U S A 1999; 96 (17) 9769-9774
  • 28 Chevalier G, Suberbielle E, Monnet C. et al. Neurons are MHC class I-dependent targets for CD8 T cells upon neurotropic viral infection. PLoS Pathog 2011; 7 (11) e1002393
  • 29 Rauch J, Steffen JF, Muntau B. et al. Human Borna disease virus 1 encephalitis shows marked pro-inflammatory biomarker and tissue immunoactivation during the course of disease. Emerg Microbes Infect 2022; 11 (01) 1843-1856
  • 30 Liesche-Starnecker F, Schifferer M, Schlegel J. et al. Hemorrhagic lesion with detection of infected endothelial cells in human bornavirus encephalitis. Acta Neuropathol 2022; 144 (02) 377-379
  • 31 Ebinger A, Santos PD, Pfaff F. et al. Lethal Borna disease virus 1 infections of humans and animals - in-depth molecular epidemiology and phylogeography. Nat Commun 2024; 15 (01) 7908
  • 32 Matsumoto Y, Hayashi Y, Omori H. et al. Bornavirus closely associates and segregates with host chromosomes to ensure persistent intranuclear infection. Cell Host Microbe 2012; 11 (05) 492-503
  • 33 Tizard I, Ball J, Stoica G, Payne S. The pathogenesis of bornaviral diseases in mammals. Anim Health Res Rev 2016; 17 (02) 92-109
  • 34 Tokunaga T, Yamamoto Y, Sakai M, Tomonaga K, Honda T. Antiviral activity of favipiravir (T-705) against mammalian and avian bornaviruses. Antiviral Res 2017; 143: 237-245
  • 35 Solbrig MV, Schlaberg R, Briese T, Horscroft N, Lipkin WI. Neuroprotection and reduced proliferation of microglia in ribavirin-treated bornavirus-infected rats. Antimicrob Agents Chemother 2002; 46 (07) 2287-2291
  • 36 Yamada K, Noguchi K, Kimitsuki K. et al. Reevaluation of the efficacy of favipiravir against rabies virus using in vivo imaging analysis. Antiviral Res 2019; 172: 104641
  • 37 Stitz L, Planz O, Bilzer T. Lack of antiviral effect of amantadine in Borna disease virus infection. Med Microbiol Immunol 1998; 186 (04) 195-200
  • 38 Coras R, Korn K, Kuerten S, Huttner HB, Ensser A. Severe bornavirus-encephalitis presenting as Guillain-Barré-syndrome. Acta Neuropathol 2019; 137 (06) 1017-1019
  • 39 Stitz L, Bilzer T, Planz O. The immunopathogenesis of Borna disease virus infection. Front Biosci 2002; 7: d541-d555
  • 40 Hallensleben W, Schwemmle M, Hausmann J. et al. Borna disease virus-induced neurological disorder in mice: infection of neonates results in immunopathology. J Virol 1998; 72 (05) 4379-4386