Osteologie
DOI: 10.1055/a-2586-3887
Review

Next-Generation Multiparametrische Quantitative Ultraschallbildgebung des Knochens

Next-generation Multiparametric Quantitative Ultrasound Imaging of Bone
Gabriele Armbrecht
1   Zentrum für Muskel- und Knochenforschung, Charité – Universitätsmedizin Berlin, Berlin, Germany
,
Edgar Wiebe
2   Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie
,
Kay Raum
3   Zentrum für Biomedizin, Charité – Universitätsmedizin Berlin, Berlin, Germany
› Author Affiliations

Zusammenfassung

Quantitativer Ultraschall (QUS) zur Knochendiagnostik hat sich in den letzten Jahren fundamental weiterentwickelt. Systeme der ersten Generation waren meist nicht-bildgebend und nutzten Parameter wie die Schallgeschwindigkeit (SOS) und die breitbandige Ultraschalldämpfung (BUA) zur Abschätzung von Osteoporose und Frakturrisiko. Neuere Verfahren setzen auf bildgeführte, multiparametrische Analysen. Die Radiofrequenz-Echografische Multi-Spektrometrie (REMS) nutzt erstmals medizinische Bildgebung zur spektral basierten Abschätzung der Knochenmineraldichte an Wirbelsäule und Femur. Die axiale Transmission verwendet geführte Ultraschallwellen zur Bestimmung der kortikalen Dicke und Porosität. Beide Methoden zeigen in Studien eine vergleichbare oder bessere Frakturdiskriminierung als DXA. Die kortikale Rückstreuanalyse (CortBS) und die multifokale Bildgebung (MultiFocus) bilden eine neue Generation der dreidimensionalen QUS-Bildgebung (3D-QUSIB). CortBS analysiert die mikrostrukturellen und viskoelastischen Eigenschaften des kortikalen Knochens durch spektrale Rückstreuanalyse. MultiFocus korrigiert Schallbrechungseffekte zur Bestimmung der kortikalen Dicke und Schallgeschwindigkeit. Durch multidirektionale 3D-Scans und spektrale Analysen werden intrakortikale Porengrößen bis zu 20 µm quantifiziert. Erste Studien zeigen, dass 3D-QUSIB vertebrale und nichtvertebrale Frakturen besser differenziert als DXA. Die vergleichende Betrachtung verschiedener Methoden unterstreicht das Potenzial dieser Technologie für eine präzisere Frakturprognose und das klinische Management metabolischer Knochenerkrankungen.

Abstract

Quantitative ultrasound (QUS) for bone diagnostics has advanced significantly in recent years. First-generation systems were mostly non-imaging and relied on parameters such as speed of sound (SOS) and broadband ultrasound attenuation (BUA) to assess osteoporosis and fracture risk. Newer methods employ image-guided, multiparametric analyses. Radiofrequency Echographic Multi-Spectrometry (REMS) was the first to use ultrasound medical imaging for spectral-based estimation of bone mineral density (BMD) at the spine and femur. Axial transmission utilizes guided ultrasound waves to determine cortical thickness and porosity. Both methods have shown comparable or superior fracture discrimination compared to DXA in studies. Cortical backscatter analysis (CortBS) and multifocal imaging (MultiFocus) represent a new generation of three-dimensional QUS imaging (3D-QUSIB). CortBS analyzes the microstructural and viscoelastic properties of cortical bone through spectral backscatter analysis. MultiFocus corrects for refraction effects to determine cortical thickness and sound velocity. Multidirectional 3D scans and spectral analyses allow quantification of intracortical pore sizes down to 20 µm. Early studies indicate that 3D-QUSIB differentiates vertebral and non-vertebral fractures more effectively than DXA. The comparative evaluation of different methods highlights the potential of this technology for more precise fracture prediction and improved clinical management of metabolic bone diseases.



Publication History

Received: 11 March 2025

Accepted: 13 April 2025

Article published online:
12 May 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Blain H, Chavassieux P, Portero-Muzy N, Bonnel F, Canovas F, Chammas M. et al. Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone. 2008; 43: 862-8
  • 2 Zebaze R, Seeman E. Cortical bone: a challenging geography. J Bone Miner Res 2015; 30: 24-9
  • 3 Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J. et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 2013; 8: 136
  • 4 Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE. et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 2004; 164: 1108-12
  • 5 Britz HM, Thomas CD, Clement JG, Cooper DM. The relation of femoral osteon geometry to age, sex, height and weight. Bone. 2009; 45: 77-83
  • 6 Lassen NE, Andersen TL, Ploen GG, Soe K, Hauge EM, Harving S. et al. Coupling of Bone Resorption and Formation in Real Time: New Knowledge Gained From Human Haversian BMUs. J Bone Miner Res 2017; 32: 1395-405
  • 7 Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI. et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010; 375: 1729-36
  • 8 Chen H, Zhou X, Shoumura S, Emura S, Bunai Y. Age- and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck. Osteoporos Int 2010; 21: 627-36
  • 9 Iori G, Du J, Hackenbeck J, Kilappa V, Raum K. Estimation of Cortical Bone Microstructure From Ultrasound Backscatter. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2021; 68: 1081-95
  • 10 Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E. et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004; 34: 195-202
  • 11 Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA. et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 2005; 90: 2787-93
  • 12 Griffith AA. VI. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character 1921; 221: 163-98
  • 13 Wang Y, Yuan Q, Deng DH, Liu ZQ. Modeling compressive strength of cement asphalt composite based on pore size distribution. Constr Build Mater 2017; 150: 714-22
  • 14 Iori G, Schneider J, Reisinger A, Heyer F, Peralta L, Wyers C. et al. Cortical thinning and accumulation of large cortical pores in the tibia reflect local structural deterioration of the femoral neck. Bone. 2020; 137: 115446
  • 15 Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res 2010; 25: 882-90
  • 16 Iori G, Heyer F, Kilappa V, Wyers C, Varga P, Schneider J. et al. BMD-based assessment of local porosity in human femoral cortical bone. Bone. 2018; 114: 50-61
  • 17 Vashishth D, Dhaliwal R, Rubin M. AGEs (Advanced Glycation End-products) in bone come of age. Bone. 2025; 190: 117301
  • 18 Raum K, Laugier P. Clinical Devices for Bone Assessment. Adv Exp Med Biol 2022; 1364: 35-53
  • 19 Bochud N, Vallet Q, Minonzio JG, Laugier P. Predicting bone strength with ultrasonic guided waves. Sci Rep 2017; 7: 43628
  • 20 Casciaro S, Conversano F, Pisani P, Muratore M. New perspectives in echographic diagnosis of osteoporosis on hip and spine. Clin Cases Miner Bone Metab 2015; 12: 142-50
  • 21 Garra BS, Locher M, Felker S, Wear KA. Measurements of ultrasonic backscattered spectral centroid shift from spine in vivo: methodology and preliminary results. Ultrasound Med Biol 2009; 35: 165-8
  • 22 Ciardo D, Pisani P, Conversano F, Casciaro S. Pulse-Echo Measurements of Bone Tissues. Techniques and Clinical Results at the Spine and Femur. Adv Exp Med Biol 2022; 1364: 145-62
  • 23 Casciaro S, Peccarisi M, Pisani P, Franchini R, Greco A, De Marco T. et al. An Advanced Quantitative Echosound Methodology for Femoral Neck Densitometry. Ultrasound Med Biol 2016; 42: 1337-56
  • 24 Conversano F, Franchini R, Greco A, Soloperto G, Chiriacò F, Casciaro E. et al. A Novel Ultrasound Methodology for Estimating Spine Mineral Density. Ultrasound in Medicine & Biology 2015; 41: 281-300
  • 25 Pisani P, Greco A, Conversano F, Renna MD, Casciaro E, Quarta L. et al. A quantitative ultrasound approach to estimate bone fragility: A first comparison with dual X-ray absorptiometry. Measurement 2017; 101: 243-9
  • 26 Greco A, Pisani P, Conversano F, Soloperto G, Renna MD, Muratore M. et al. Ultrasound Fragility Score: An innovative approach for the assessment of bone fragility. Measurement 2017; 101: 236-42
  • 27 Di Paola M, Gatti D, Viapiana O, Cianferotti L, Cavalli L, Caffarelli C. et al. Radiofrequency echographic multispectrometry compared with dual X-ray absorptiometry for osteoporosis diagnosis on lumbar spine and femoral neck. Osteoporos Int 2019; 30: 391-402
  • 28 Cortet B, Dennison E, Diez-Perez A, Locquet M, Muratore M, Nogues X. et al. Radiofrequency Echographic Multi Spectrometry (REMS) for the diagnosis of osteoporosis in a European multicenter clinical context. Bone. 2021; 143: 115786
  • 29 Fassio A, Andreola S, Gatti D, Bianco B, Gatti M, Gambaro G. et al. Radiofrequency echographic multi-spectrometry and DXA for the evaluation of bone mineral density in a peritoneal dialysis setting. Aging Clin Exp Res 2023; 35: 185-92
  • 30 Iori G, Du J, Hackenbeck J, Kilappa V, Raum K. Estimation of Cortical Bone Microstructure From Ultrasound Backscatter. IEEE Trans Ultrason Ferroelectr Freq Control 2021; 68: 1081-95
  • 31 McCandless BA, Raum K, Muller M. The respective and dependent effects of scattering and bone matrix absorption on ultrasound attenuation in cortical bone. Phys Med Biol 2024; 69: 115018
  • 32 Karbalaeisadegh Y, Yousefian O, Iori G, Raum K, Muller M. Acoustic diffusion constant of cortical bone: Numerical simulation study of the effect of pore size and pore density on multiple scattering. J Acoust Soc Am 2019; 146: 1015–1023
  • 33 Bauer AQ, Anderson CC, Holland CC, Miller JC. Bone sonometry: Reducing phase aberration to improve estimates of broadband ultrasonic attenuation. J Acoust Soc Am 2009; 125: 522–529
  • 34 Renaud G, Johnson JL, Cassereau D. Real-time Kirchhoff migration for ultrasound imaging of the bone cortex. SEG Technical Program Expanded Abstracts 2018: Society of Exploration Geophysicists 2018; p. 4797-801
  • 35 Renaud G, Kruizinga P, Cassereau D, Laugier P. In vivo ultrasound imaging of the bone cortex. Phys Med Biol 2018; 63: 125010
  • 36 Nguyen Minh H, Muller M, Raum K. Estimation of Thickness and Speed of Sound for Transverse Cortical Bone Imaging Using Phase Aberration Correction Methods: An In Silico and Ex Vivo Validation Study. Applied Sciences 2022; 12: 5283
  • 37 Nguyen Minh H, Du J, Raum K. Estimation of Thickness and Speed of Sound in Cortical Bone Using Multifocus Pulse-Echo Ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2020; 67: 568-79
  • 38 Minh-Nguyen H, Massmann J, Armbrecht G, Raum K. Fracture discrimination in postmenopausal women with low bone mineral density by multiparametric bone ultrasound imaging. QMSKI/ISUCB. 2022: 13-17 June, 2022; Noordwijk, Netherlands
  • 39 Armbrecht G, Nguyen Minh H, Massmann J, Raum K. Pore-Size Distribution and Frequency-Dependent Attenuation in Human Cortical Tibia Bone Discriminate Fragility Fractures in Postmenopausal Women With Low Bone Mineral Density. JBMR Plus 2021; 5: e10536
  • 40 Armbrecht G, Galindo A, Aghamiry H, Liu Z, Lepetre N, Raum K. et al. Cortical Ultrasound Spectroscopy Discriminates Fragility Fractures in Women and Men Better Than Bone Mineral Density. Aging Clinical and Experimental Research 2024; 36: S355
  • 41 Dehnen C, Galindo A, Hoff P, Palme O, Maurer L, Raum K. et al. Quantitative ultrasound imaging reveals distinct fracture-associated differences in tibial intracortical pore morphology and viscoelastic properties in aged individuals with and without diabetes mellitus – an exploratory study. Front Endocrinol (Lausanne) 2024; 15: 1474546
  • 42 Minonzio JG, Ramiandrisoa D, Schneider J, Kohut E, Streichhahn M, Stervbo U. et al. Bi-Directional Axial Transmission measurements applied in a clinical environment. PLoS One 2022; 17: e0277831
  • 43 Minonzio JG, Bochud N, Vallet Q, Ramiandrisoa D, Etcheto A, Briot K. et al. Ultrasound-Based Estimates of Cortical Bone Thickness and Porosity Are Associated With Nontraumatic Fractures in Postmenopausal Women: A Pilot Study. J Bone Miner Res 2019; 34: 1585-96
  • 44 Patel S, Hyer S, Tweed K, Kerry S, Allan K, Rodin A. et al. Risk Factors for Fractures and Falls in Older Women with Type 2 Diabetes Mellitus. Calcified Tissue International 2008; 82: 87-91
  • 45 Tao B, Liu J-M, Zhao H-Y, Sun L-H, Wang W-Q, Li X-Y. et al. Differences between Measurements of Bone Mineral Densities by Quantitative Ultrasound and Dual-Energy X-Ray Absorptiometry in Type 2 Diabetic Postmenopausal Women. The Journal of Clinical Endocrinology & Metabolism 2008; 93: 1670-5
  • 46 Sosa M, Saavedra P, Jódar E, Lozano-Tonkin C, Quesada JM, Torrijos A. et al. Bone mineral density and risk of fractures in aging, obese post-menopausal women with type 2 diabetes. The GIUMO Study. Aging Clinical and Experimental Research 2009; 21: 27-32
  • 47 Caffarelli C, Tomai Pitinca MD, Al Refaie A, Ceccarelli E, Gonnelli S. Ability of radiofrequency echographic multispectrometry to identify osteoporosis status in elderly women with type 2 diabetes. Aging Clinical and Experimental Research 2022; 34: 121-7
  • 48 Samelson EJ, Demissie S, Cupples LA, Zhang X, Xu H, Liu CT. et al. Diabetes and Deficits in Cortical Bone Density, Microarchitecture, and Bone Size: Framingham HR-pQCT Study. J Bone Miner Res 2018; 33: 54-62
  • 49 Johansson L, Sundh D, Zoulakis M, Rudang R, Darelid A, Brisby H. et al. The Prevalence of Vertebral Fractures Is Associated With Reduced Hip Bone Density and Inferior Peripheral Appendicular Volumetric Bone Density and Structure in Older Women. J Bone Miner Res 2018; 33: 250-60
  • 50 Stein EM, Kepley A, Walker M, Nickolas TL, Nishiyama K, Zhou B. et al. Skeletal structure in postmenopausal women with osteopenia and fractures is characterized by abnormal trabecular plates and cortical thinning. J Bone Miner Res 2014; 29: 1101-9
  • 51 Nishiyama KK, Macdonald HM, Hanley DA, Boyd SK. Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT. Osteoporos Int 2013; 24: 1733-40
  • 52 Szulc P, Boutroy S, Vilayphiou N, Chaitou A, Delmas PD, Chapurlat R. Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study. J Bone Miner Res 2011; 26: 1358-67
  • 53 Whittier DE, Samelson EJ, Hannan MT, Burt LA, Hanley DA, Biver E. et al. A Fracture Risk Assessment Tool for High Resolution Peripheral Quantitative Computed Tomography. J Bone Miner Res 2023; 38: 1234-44
  • 54 Whittier DE, Samelson EJ, Hannan MT, Burt LA, Hanley DA, Biver E. et al. Bone Microarchitecture Phenotypes Identified in Older Adults Are Associated With Different Levels of Osteoporotic Fracture Risk. J Bone Miner Res 2022; 37: 428-39
  • 55 Chapurlat R, Bui M, Sornay-Rendu E, Zebaze R, Delmas PD, Liew D. et al. Deterioration of Cortical and Trabecular Microstructure Identifies Women With Osteopenia or Normal Bone Mineral Density at Imminent and Long-Term Risk for Fragility Fracture: A Prospective Study. J Bone Miner Res 2020; 35: 833-44
  • 56 Samelson EJ, Broe KE, Xu H, Yang L, Boyd S, Biver E. et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol 2019; 7: 34-43
  • 57 Burt LA, Manske SL, Hanley DA, Boyd SK. Lower Bone Density, Impaired Microarchitecture, and Strength Predict Future Fragility Fracture in Postmenopausal Women: 5-Year Follow-up of the Calgary CaMos Cohort. J Bone Miner Res 2018; 33: 589-97
  • 58 Sornay-Rendu E, Boutroy S, Duboeuf F, Chapurlat RD. Bone Microarchitecture Assessed by HR-pQCT as Predictor of Fracture Risk in Postmenopausal Women: The OFELY Study. J Bone Miner Res 2017; 32: 1243-51
  • 59 Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 2007; 22: 425-33
  • 60 Iori G, Schneider J, Reisinger A, Heyer F, Peralta L, Wyers C. et al. Large cortical bone pores in the tibia are associated with proximal femur strength. PLoS One 2019; 14: e0215405