RSS-Feed abonnieren
DOI: 10.1055/a-2588-6849
A narrative review on alcohol and alimentary tract cancer with special emphasis on acetaldehyde and oxidative stress
Alkohol und Karzinome des Verdauungstrakts: die Bedeutung von Azetaldehyd und oxidativem StressAuthors
Gefördert durch: Manfred Lautenschläger-Stiftung
Gefördert durch: Dietmar Hopp Stiftung
Gefördert durch: Octapharma
Gefördert durch: Hans Kompernass Trading Company

Abstract
Approximately 4% of all cancer cases worldwide are caused by alcohol consumption (oropharynx, larynx, esophagus, stomach, colorectum, liver and the female breast). Various mechanisms contribute to ethanol-mediated carcinogenesis, including the action of acetaldehyde, the first metabolite of ethanol oxidation and oxidative stress primarily promoted through the induction of cytochrome P4502E1. Acetaldehyde is toxic and carcinogenic, binds to DNA and proteins, inhibits the oxidative defense- and the nuclear repair system, and prevents DNA methylation. High levels of acetaldehyde occur through increased production in the presence of a hyperactive alcohol dehydrogenase (ADH1C*1,1) or decreased degradation in the presence of low active aldehyde dehydrogenase (ALDH2*1,2). In addition, microbes of the upper alimentary tract and the colorectum effectively produce acetaldehyde from ethanol. In addition, ethanol induces cytochrome P4502E1 resulting in an enhanced ethanol metabolism and the generation of reactive oxygen species (ROS). ROS may cause lipid peroxidation (LPO) with the LPO-products 4-hydroxynonenal or malondialdehyde, which may form highly carcinogenic etheno DNA-adducts CYP2E1 is also involved in the activation of a variety of dietary and tobacco procarcinogens and in the degradation of retinoic acid. Alcohol also influences tumor promotion, such as epigenetics with a change in DNA methylation and histone modification, and affects a variety of cancer genes and signaling pathways. Preventive measures include reducing alcohol consumption, quitting smoking and keeping good oral hygiene. Alcohol consumers – especially when they smoke or belong to genetic risk groups – should be regularly checked for cancer of the upper alimentary tract, for alcohol- associated liver disease, and for breast cancer. Cessation or reduction of alcohol consumption definitively reduces cancer risk.
Zusammenfassung
Ungefähr 4% aller Krebsfälle weltweit werden durch Alkohol verursacht (Mundhöhle, Pharynx, Larynx, Ösophagus, Magen, Kolorektum, Leber und weibliche Brustdrüse). Verschiedene Mechanismen wie Azetaldehyd, das erste Stoffwechselprodukt von Äthanol und oxidativem Stress, primär hervorgerufen durch die Induktion von Zytochrom P4502E1 (CYP2E1), tragen hierzu bei. Azetaldehyd ist toxisch und karzinogen, bindet an Proteine und DNA, hemmt das anti-oxidative Abwehr- und nukleäre DNA-Reparationssystem, und verhindert die DNA-Methylierung. Hohe Azetaldehydspiegel entstehen durch erhöhte Produktion in der Gegenwart der hyperaktiven Alkohol-dehydrogenase (ADH1C*1,1) oder durch einen verminderten Abbau in der Gegenwart der niedrig aktiven Azetaldehyd-dehydrogenase (ALDH2*1,2). Zusätzlich produzieren Bakterien des oberen Verdauungstraktes und des Kolorektums Azetaldehyd aus Äthanol. Das durch Äthanol induzierte CYP2E1 ist für einen gesteigerten Äthanolstoffwechsel und für die Generierung von reaktiven Sauerstoff-Species (ROS) verantwortlich. ROS kann zur Lipid Peroxidation (LPO) mit den LPO-Produkten 4-Hydoxynonenal und Malondialdehyd führen, die ihrerseits zur Bildung hochkarzinogener etheno DNA-Addukte beitragen. CYP2E1 ist auch bei Aktivierung verschiedener Karzinogene in Nahrungsmittel und Tabak, sowie beim Abbau von Retinsäure beteiligt. Alkohol ist zudem ein Tumorpromotor. Alkohol verursacht epigenetische Veränderungen bei der Methylierung von DNA und bei der Histon-Modifikation, und beeinflusst verschiedene Gene und Signalwege, die bei der Krebsentstehung von Bedeutung sind. Vorsorge und Früherkennung beinhalten Alkoholreduktion, Aufhören zu rauchen, sowie eine sorgfältige Mundhygiene. Alkoholkonsumenten, besonders, wenn sie rauchen oder zu einer genetischen Risikogruppe gehören, sollten regelmäßig auf Karzinome des oberen Verdauungstraktes, auf eine alkoholbedingte Lebererkrankung und auf Brustkrebs untersucht werden. Alkoholabstinenz oder Alkoholreduktion reduzieren definitiv das Krebsrisiko.
Keywords
ethanol - acetaldehyde - oropharynx cancer - hepatocellular cancer - colorectal cancer - cytochrome P4502E1Schlüsselwörter
Äthanol - Azetaldehyd - Oropharynxkarzinom - hepatozelluläres Karzinom - kolorektales Karzinom - Cytochrom P5402E1Publikationsverlauf
Eingereicht: 23. Januar 2025
Angenommen nach Revision: 17. April 2025
Artikel online veröffentlicht:
16. Mai 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Elflein J. Key facts on alcohol related deaths globally 2022. Health, Pharma & MedTech 2024; 22.
- 2 World Health Organization. Alcohol. Zugriff am 17. April 2025 unter: https://www.who.int/news-room/fact-sheets/detail/alcohol
- 3 U.S. Surgeon General. Alcohol and cancer risk. The U.S. Surgeon General’s Advisory. US: Office of the Surgeon General. 2025
- 4 Anderson BO, Berdzuli N, Ilbawi A. et al. Health and cancer risks associated with low levels of alcohol consumption. Lancet Publ Health 2023; 8 (01) e6-e7
- 5 Rumgay H, Shield K, Charvat H. et al. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncology 2021; 22: 1071-1080
- 6 Griswold MG, Fullman N, Hawley C. et al. Alcohol use and burden for 195 countries and territories, 1990–2016 ; a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018; 392: 1015-1035
- 7 Giovannucci E. Commentary: remaining questions on moderate alcohol drinking and cancer risk. Cancer Causes Control 2025;
- 8 Lamu L. Etude de statistique Clinique de 131 cas de cancer de l’oesophage et du cardia. Arch Mal Appar Dig Mal Nutr 1910; 4: 451-456
- 9 Tuyns A. Alcohol and cancer. Health and Research World 1978; 2: 20-31
- 10 Baan R, Straif K, Grosse Y. et al. Carcinogenicity of alcoholic beverages. Lancet Oncology 2007; 8: 292-293
- 11 Gapstur SM, Bouvard V, Nethan ST. et al. The IARC perspective on alcohol reduction or cessation and cancer risk. NEJM 2023; 389 (26) 2486-2494
- 12 Rumgay H, Murphy N, Ferrari P. et al. Alcohol and cancer: epidemiology and biological mechanisms. Nutrient 2021; 13: 3173-3181
- 13 Kang JO, Shin CM, Sung J. et al. Association between ALDH2 polymorphism and gastric cancer risk in terms of alcohol consumption: a meta-analysis. Alcohol Clin Exp Res 2021; 45: 6-14
- 14 Sung H, Ferlay J, Siegel RL. et al. Global cancer statistics 2020. Globocan Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin 2021; 71 (03) 209-249
- 15 International Agency for Research on Cancer (IARC), WHO. Cancer Causes. Cancer attributable to alcohol, Global Cancer Observatory. 2025 Zugriff am 17. April 2025 unter: https://gco.iarc.fr
- 16 Salaspuro M, Salaspuro V, Seitz HK. Interaction of alcohol and tobacco in the upper aerodigestive tract and stomach cancer. In: Cho CH, Purohit V. , ed. Alcohol, Tobacco and Cancer. Basel: Karger Basel; 2006: 48-62
- 17 Shams-White MM, Brockton NT, Mitrou P. et al. Operationalizing the 2018 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Cancer Prevention Recommendations: A Standardized Scoring System. Nutrients 2019; 11 (07) 1572
- 18 Bagnardi V, Rota M, Botteri E. et al. Light alcohol drinking and cancer: a meta analysis. Ann Oncol 2013; 24 (02) 301-308
- 19 Ma K, Baloch Z, He TT. et al. Alcohol Consumption and Gastric Cancer Risk: A Meta-Analysis. Med Sci Monit 2017; 23: 238-246
- 20 Rota M, Pelucchi C, Bertuccio P. et al. Alcohol consumption and gastric cancer risk – A pooled analysis within the StoP project consortium. Int J Cancer 2017; 141 (10) 1950-1962
- 21 Jun S, Park H, Kim UJ. et al. Cancer risk based on alcohol consumption levels: a comprehensive systematic review and meta-analysis. Epidemiol Health 2023; 45: e2023092
- 22 Hua H, Jiang Q, Sun P. et al. Risk factors for early-onset colorectal cancer: systematic review and meta-analysis. Front Oncol 2023; 13: 1132306
- 23 Hur J, Smith-Warner SA, Rimm EB. et al. Alcohol intake in early adulthood and risk of colorectal cancer: three large prospective cohort studies of men and women in the United States. Eur J Epidemiol 2021; 36 (03) 325-333
- 24 Park SY, Wilkens LR, Setiawan VW. et al. Alcohol Intake and Colorectal Cancer Risk in the Multiethnic Cohort Study. Am J Epidemiol 2019; 188 (01) 67-76
- 25 Klarich DS, Brasser SM, Hong MY. Moderate Alcohol Consumption and Colorectal Cancer Risk. Alcohol Clin Exp Res 2015; 39 (08) 1280-1291
- 26 Su LJ, Arab L. Alcohol consumption and risk of colon cancer: evidence from the national health and nutrition examination survey I epidemiologic follow up study. Nutr Cancer 2004; 50: 111-119
- 27 Ben Q, Wang L, Liu J. et al. Alcohol drinking and the risk of colorectal adenoma: a dose-response meta-analysis. Eur J Cancer Prev 2015; 24 (04) 286-295
- 28 Seitz HK, Homann N. Colorectal cancer and Alcohol. In: Coloretal Cancer: from Prevention to Patient Care. InTech Open Publisher; 2012: 199-210
- 29 Seitz HK. Alcohol consumption as a cause of cancer. Addiction 2016; 112: 232-233
- 30 Homann N, Stickel F, König IR. et al. Alcohol dehydrogenase 1C*1 allele is a genetic marker for alcohol-associated cancer in heavy drinkers. Int J Cancer 2006; 118: 1998-2002
- 31 Yokoyama A, Muramatsu T, Ohmori T. et al. Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics. Carcinogenesis 1998; 19: 1383-1387
- 32 Homann N, König IR, Marks M. et al. Alcohol and colorectal cancer: The role of alcohol dehydrogenase 1C polymorphism. Alcohol Clin Exp Res 2009; 33: 551-556
- 33 Duthie SJ. Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. J Inherit Metab Dis 2011; 34 (01) 101-109
- 34 Giovannucci E, Rimm EB, Ascherio A. et al. Alcohol, low-methionine – low folate diets, and risk of colon cancer in men. J Natl Cancer Inst 1995; 87: 265-273
- 35 Stickel F, Herold C, Seitz HK. et al. Alcohol and methyl transfer: Implications for alcohol related hepatocarcinogenesis. In: Ali S, Friedman SL, Mann DA. , ed. Liver Diseases: Biochemical Mechanisms and New Therapeutic Insights. Enfield, Jersey, Plymouth: Science Publ; 2006: 45-58
- 36 Albanes D, Heinonen OP, Taylor PR. et al. Alpha-Tocopherol and beta-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: effects of base-line characteristics and study compliance. J Natl Cancer Inst 1996; 88 (21) 1560-1570
- 37 Liu C, Russell RM, Seitz HK. et al. Ethanol enhances retinoic acid metabolism into polar metabolites in rat liver via induction of cytochrome P4502E1. Gastroenterology 2001; 120: 179-189
- 38 Seitz HK, Stickel F. Molecular mechanisms in ethanol mediated carcinogenesis. Nature Cancer Rev 2007; 7: 599-612
- 39 IARC. Alcohol beverage consumption and ethyl carbamate (urethane). In: IARC monographs on the evaluation of carcinogenic risks to humans. Lyon: IARC; 2010: 96
- 40 IARC Working Group on the evaluation of carcinogenic risks to humans. Consumption of alcoholic beverages. IARC Monogr Eval Carcinog Risks Hum 2012; 100E: 373-499
- 41 Ambade A, Satishchandran A, Gyongyosi B. et al. Adult mouse model of early hepatocellular carcinoma promoted by alcoholic liver disease. World J Gastroenterol 2016; 22 (16) 4091-4108
- 42 Seitz HK, Simanowski UA, Garzon FT. et al. Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology 1990; 98: 408-413
- 43 Salaspuro M, Lachenmeier DW. Unique human cancer model for acetaldehyde based on Mendelian randomization. Arch Toxicol 2020; 94: 2887-2888
- 44 Hartwig A, Arand M, Epe B. et al. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94: 1787-1877
- 45 Seitz HK, Moreira B, Neuman M. Alcohol and cancer: the role of cytochrome P4502E1. Nutr Cur 2024; 3 (01) e148
- 46 Rodriguez FD, Covenas R. Biochemical Mechanisms Associating Alcohol Use Disorders with Cancers. Cancers (Basel) 2021; 13 (14) 3548
- 47 Stornetta A, Guidolin V, Balbo S. Alcohol-derived acetaldehyde exposure in the oral cavity. Cancers 10 2018; 20: 1-27
- 48 Guidolin V, Carlson ES, Carra A. et al. Identification of new markers of alcohol-derived DNA damage in humans. Biomolecules 2021; 11: 366
- 49 Hirohashi K, Ohashi S, Amanuma Y. et al. Protective effects of Alda-1, an ALDH2 activator, on alcohol-derived DNA damage in the esophagus of human ALDH2*2 (Glu504Lys) knock-in-mice. Carcinogenesis 2020; 41: 194-202
- 50 Hoes L, Dok R, Verstrepen KJ. et al. Ethanol-induced cell damage can result in the development of oral tumors. Cancers 2021; 13: 1-22
- 51 Boccia S, Hashibe M, Galli P. et al. Aldehyde dehydrogenase 2 and head and neck cancer: a meta-analysis implementing a Mendelian Randomization approach. Cancer Epidemiol Biomark Prev 2009; 18: 248-254
- 52 Yang SJ, Yokoyama A, Yokoyama T. et al. Relationship between genetic polymorphisms of ALDH2 and ADH1B on esophageal cancer risk: a meta-analysis. World J Gastroenterol 2010; 16: 4210-4220
- 53 Väkeväinen S, Tillonen J, Agarwal DP. et al. High salivary acetaldehyde after a moderate dose of alcohol in ALDH2-deficient subjects: strong evidence for the local carcinogenic action of acetaldehyde. Alcohol Clin Exp Res 2000; 24: 873-877
- 54 Maejima R, Iijima K, Kaihovaara P. et al. Effects of ALDH2 genotype, PPI treatment and L-cysteine on carcinogenic acetaldehyde in gastric juice and saliva after intragastric alcohol administration. PLos ONE 2015; 10 (04) e0120397
- 55 Lachenmeier DW, Salaspuro M. ALDH2-deficiency as genetic epidemiologic and biochemical model for the carcinogenicity of acetaldehyde. Reg Toxicol Pharmacol 2017; 86: 128-136
- 56 Luo HR, Wu GS, Pakstis AJ. et al. Origin and dispersal of atypical aldehyde dehydrogenase ALDH2*487Lys. Gene 2009; 435: 96-103
- 57 Visapää J-P, Götte K, Benesova M. et al. Increased cancer risk in heavy drinkers with the alcohol dehydrogenase 1C*1 allele, possibly due to salivary acetaldehyde. Gut 2004; 53: 871-876
- 58 Nieminen MT, Salaspuro M. Local acetaldehyde – an essential role in alcohol-related upper gastrointestinal tract carcinogenesis. Cancers 2018; 10: 1-23
- 59 Oneta CM, Lieber CS, Li J. et al. Dynamics of cytochrome P4502E1 activity in man: induction by ethanol and disappearance during withdrawal phase. J Hepatol 2002; 36: 47-52
- 60 Garro AJ, Seitz HK, Lieber CS. Enhancement of dimethylnitrosamine metabolism and activation to a mutagen following chronic ethanol consumption. Cancer Res 1981; 41: 120-124
- 61 Wang XD, Liu C, Chung J. et al. Chronic alcohol intake reduces retinoic acid concentration and enhances AP-1 (c-jun and c-fos) expression in rat liver. Hepatology 1998; 28: 744-750
- 62 Seitz HK, Wang XD. The role of cytochrome P-4502E1 in ethanol mediated carcinogenesis. In: Dey A. , ed. Cytochrome P4502E1: its role in disease and drug metabolism. Subcellular Biochemistry 67. Dodrecht, Heidelberg, New York, London: Springer; 2013: 131-144
- 63 Albano E. Alcohol, oxidative stress, and free radical damage. Proc Nutr Soc 2006; 65: 278-290
- 64 Linhart K, Bartsch HU, Seitz HK. The role of reactive oxygen species (ROS) and cytochrome P4502E1 in the generation of carcinogenic DNA adducts. Redox Biol 2014; 3: 56-62
- 65 Wang Y, Millonig G, Nair J. et al. Ethanol-induced cytochrome P-4502E1 causes carcinogenic etheno-DNA lesions in alcoholic liver disease. Hepatology 2009; 50: 453-461
- 66 Mueller S, Pecerella T, Qin H. et al. Carcinogenic etheno DNA-Adducts in Alcoholic Liver Disease: Correlation with Cytochrome P-4502E1 and Fibrosis. Alcoholism Clin Exp Res 2018; 42: 252-259
- 67 Millonig G, Bernhardt F, Wang Y. et al. Ethanol-mediated carcinogenesis in the human esophagus implicates Cytochrome P-4502E1 induction and the generation of carcinogenic DNA-lesions. Int J Cancer 2011; 128: 533-540
- 68 Ye Q, Lian F, Chavez PR. et al. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats. Hepatobiliary Surg Nutr 2012; 1: 5-18
- 69 Homann N, Mueller S, Schröder F. et al. Clomethiazol inhibits cytochrome P450 2E1 and improves alcoholic liver disease. Gut 2021; 71 (04) 842-844
- 70 French SW. Epigenetic events in liver cancer resulting from alcoholic liver disease. Alcohol Res 2013; 35: 57-67
- 71 Varela-Rey M, Woodhoo A, Martinez-Chantar ML. et al. Alcohol, DNA methylation, and cancer. Alcohol Res 2013; 35: 25-35
- 72 Weitzmann SA, Turk PW, Milkowski DH. et al. Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci USA 1994; 91 (04) 1261-1264
- 73 Sasaki Y. Does oxidative stress participate in the development of hepatocellular carcinoma?. J Gastroenterol 2006; 41 (12) 1135-1148
- 74 Hitchler MJ, Domann FE. Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radic Biol Med 2009; 47 (02) 115-127
- 75 Zhou X, Wang L, Xiao J. et al. Alcohol consumption, DNA methylation and colorectal cancer risk: results from pooled cohort studies and Mendelian randomization analysis. Int J Cancer 2022; 151(1): 83–94. .
- 76 Bardag-Gorce F, French BA, Joyce M. et al. Histone acetyltransferase p300 modulates gene expression in an epigenetic manner at high blood alcohol levels. Exp Mol Pathol 2009; 82 (02) 197-202
- 77 Muntean AG, Hess JL. Epigenetic dysregulation in cancer. Am J Pathol 2009; 175 (04) 1353-1361
- 78 Bardag-Gorce F, French BA, Joyce M. et al. Histone acetyltransferase p300 modulates gene expression in an epigenetic manner at high blood alcohol levels. Exp Mol Pathol 2007; 82 (02) 197-202
- 79 Abbas T, Dutta A. CRL4Cdt2: master coordinator of cell cycle progression and genome stability. Cell Cycle 2011; 10 (02) 241-249
- 80 Serres MP, Zlotek-Zlotkiewicz E, Concha C. et al. Cytoplasmic p27 is oncogenic and cooperates with Ras both in vivo and in vitro. Oncogene 2011; 30 (25) 2458-2846
- 81 Dunty B. Alcohol, cancer genes, and signaling pathways. In: Zakhari S, Vasiliou V, Guo QM. , ed. Alcohol and cancer. Berlin: Springer Science; 2010: 93-126
- 82 Repunte-Canonigo V, van der Stap LD, Chen J. et al. Genome-wide gene expression analysis identifies K-ras as a regulator of alcohol intake. Brain Res 2010; 21: 1339
- 83 Asahina K, Balog S, Hwang E. et al. Moderate alcohol intake promotes pancreatic ductal adenocarcinoma development in mice expressing oncogenic Kras. Am J Physiol Gastrointest Liver Physiol 2020; 318 (02) G265-G276
- 84 Clement EJ, Law HCH, Qiao F. et al. Combined Alcohol Exposure and KRAS Mutation in Human Pancreatic Ductal Epithelial Cells Induces Proliferation and Alters Subtype Signatures Determined by Multi-Omics Analysis. Cancers (Basel) 2022; 14 (08) 1968
- 85 Jayasekara H, MacInnis RJ, Williamson EJ. et al. Lifetime alcohol intake is associated with an increased risk of KRAS+ and BRAF- / KRAS- but not BRAF+ colorectal cancer. Int J Cancer 2017; 140 (07) 1485-1493
- 86 Gomes-Fernandes B, Trindade LM, de Castro Bastos Rodrigues M. et al. Association between KRAS mutation and alcohol consumption in Brazilian patients with colorectal cancer. Sci Rep 2024; 14 (01) 26445
- 87 Contu SS, Contu PC, Damin DC. et al. pRB expression in esophageal mucosa of individuals at high risk for squamous cell carcinoma of the esophagus. World J Gastroenterol 2007; 13: 1728-1731
- 88 Ai L, Stephenson KK, Ling W. et al. The p16 (CDKN2a/INK4a) tumor-suppressor gene in head and neck squamous cell carcinoma: a promoter methylation and protein expression study in 100 cases. Mod Pathol 2003; 16: 944-950
- 89 Hu W, Feng Z, Eveleigh J. et al. The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis 2002; 23 (11) 1781-1789
- 90 Hsieh LL, Wang PF, Chen IH. et al. Characteristics of mutations in the p53 gene in oral squamous cell carcinoma associated with betel quid chewing and cigarette smoking in Taiwanese. Carcinogenesis 2001; 22: 1497-1503
- 91 Han M, Wu G, Sun P. et al. Association of genetic polymorphisms in PTEN and additional interaction with alcohol consumption and smoking on colorectal cancer in Chinese population. Int J Clin Exp Med 2015; 8 (11) 21629-21634
- 92 Tan W, Bailey AP, Shparago M. et al. Chronic alcohol consumption stimulates VEGF expression, tumor angiogenesis and progression of melanoma in mice. Cancer Biol Ther 2007; 6 (08) 1211-1217
- 93 Gu JW, Bailey AP, Sartin A. et al. Ethanol stimulates tumor progression and expression of vascular endothelial growth factor in chick embryos. Cancer 2005; 103 (02) 422-431
- 94 Linderborg K, Salaspuro M, Väkeväinen S. A single sip of a strong alcoholic beverage causes exposure to carcinogenic concentrations of acetaldehyde in the oral cavity. Food Chem Toxicol 2011; 49: 2103-2106
- 95 Salaspuro V, Salaspuro M. Synergistic effect of alcohol drinking and smoking on in vivo acetaldehyde concentration in saliva. Int J Cancer 2004; 111: 480-483
- 96 Homann N, Jousimies-Somer H, Jokelainen K. et al. High acetaldehyde levels in saliva after ethanol consumption: methodological aspects and pathogenetic implications. Carcinogenesis 1997; 18: 1739-1744
- 97 Nieminen MT, Uittamo J, Salaspuro M. et al. Acetaldehyde production from ethanol and glucose by non-Candida albicans yeasts in vitro. Oral Oncol 2009; 45: e245-e248
- 98 Yokoyama A, Yokoyama T, Omori T. et al. Helicobacter pylori, atrophic gastritis, inactive aldehyde dehydrogenase-2, macrocytosis and multiple aerodigestive tract cancers and the risk for gastric cancer in alcoholic Japanese men. J Gastroenterol Hepatol 2007; 22: 210-217
- 99 Asanuma K, Chiba T, Tadano T. et al. Genetic Polymorphism in Alcohol Metabolism and Drinking Behavior Are Associated with Gastric Cancer Risk in Men. Intern Med 2025; 64 (01) 41-46
- 100 Väkeväinen S, Mentula S, Nuutinen H. et al. Ethanol-derived microbial production of carcinogenic acetaldehyde in achlorhydric atrophic gastritis. Scan J Gastroenterol 2002; 37: 648-655
- 101 Chiang CP, Jao SW, Lee SP. et al. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer. Alcohol 2012; 46: 37-49
- 102 Simanowski UA, Homann N, Knühl M. et al. Increased rectal cell proliferation following alcohol abuse. Gut 2001; 49: 418-422
- 103 Jokelainen K, Roine RP, Väänänen H. et al. In vitro acetaldehyde formation by human colonic bacteria. Gut 1994; 35: 1271-1274
- 104 Nosova T, Jousimies-Somer H, Kaihovaara P. et al. Characteristics of alcohol dehydrogenases of certain aerobic bacteria representing human colonic flora. Alcohol Clin Exp Res 1997; 21: 489-494
- 105 Köhler B, Arslic-SchmittPecerella T. et al. Upregulation of Mcl-1, an anti-apoptotic protein as a possible mechanism for ethanol-mediated colorectal carcinogenesis in heavy drinkers. Alcoholism Clin Exp Res 2016; 40: 2094-2101
- 106 Rossi M, Anwar MJ, Usman A. et al. Colorectal Cancer and Alcohol Consumption – Populations to Molecules. Cancers 2018; 10 (38)
- 107 Wang XQ, Yan H, Terry PD. et al. Interaction between dietary factors and Helicobacter pylori infection in noncardia gastric cancer: a population-based case-control study in China. J Am Coll Nutr 2012; 31: 375-384
- 108 Brooks PJ, Enoch M-A, Goldman D. et al. The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLos Med 2009; 24: 0258-0263
- 109 Seitz HK, Neuman M. Narrative review on alcoholic liver disease: from fibrosis to cancer. Dig Res Med 2022; 5: 15-37