RSS-Feed abonnieren
DOI: 10.1055/a-2601-9030
Spinal Cord Imaging
Funding None.

Abstract
An exceptionally broad array of diseases can affect the spinal cord, often in ways that are nonspecific with significant overlap in symptomatology and neurologic exam findings. Neuroimaging is essential in determining the underlying cause and is usually the first diagnostic test to meaningfully reshape the differential diagnosis and adjust which investigations are prioritized. In combination with disease time course, the differential diagnosis can be narrowed by determining a lesion's morphological characteristics, pattern of enhancement, predilection for certain tracts, longitudinal length, and associated radiographic abnormalities. This review provides a brief overview of spinal anatomy using normal spinal cord imaging, followed by a suggested approach to analyzing images and highlighting the radiographic abnormalities unique to each pathology that affects the spinal cord (i.e., autoimmune, infectious, neoplastic, nutritional, structural, and vascular).
Publikationsverlauf
Artikel online veröffentlicht:
11. Juli 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Mariano R, Flanagan EP, Weinshenker BG, Palace J. A practical approach to the diagnosis of spinal cord lesions. Pract Neurol 2018; 18 (03) 187-200
- 2 Barreras P, Fitzgerald KC, Mealy MA. et al. Clinical biomarkers differentiate myelitis from vascular and other causes of myelopathy. Neurology 2018; 90 (01) e12-e21
- 3 Mair D, Paris A, Zaloum SA. et al. Nitrous oxide-induced myeloneuropathy: a case series. J Neurol Neurosurg Psychiatry 2023; 94 (09) 681-688
- 4 Gao H, Li W, Ren J, Dong X, Ma Y, Zheng D. Clinical and MRI differences between patients with subacute combined degeneration of the spinal cord related vs. unrelated to recreational nitrous oxide use: a retrospective study. Front Neurol 2021; 12: 626174
- 5 Wingerchuk DM, Banwell B, Bennett JL. et al; International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85 (02) 177-189
- 6 Bot JCJ, Barkhof F, Polman CH. et al. Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal MRI examination. Neurology 2004; 62 (02) 226-233
- 7 Zalewski NL, Rabinstein AA, Krecke KN. et al. Characteristics of spontaneous spinal cord infarction and proposed diagnostic criteria. JAMA Neurol 2019; 76 (01) 56-63
- 8 Cao J, Su ZY, Xu SB, Liu CC. Subacute combined degeneration: a retrospective study of 68 cases with short-term follow-up. Eur Neurol 2018; 79 (5–6): 247-255
- 9 Hemmer B, Glocker FX, Schumacher M, Deuschl G, Lücking CH. Subacute combined degeneration: clinical, electrophysiological, and magnetic resonance imaging findings. J Neurol Neurosurg Psychiatry 1998; 65 (06) 822-827
- 10 Dubey D, Pittock SJ, Krecke KN. et al. Clinical, radiologic, and prognostic features of myelitis associated with myelin oligodendrocyte glycoprotein autoantibody. JAMA Neurol 2019; 76 (03) 301-309
- 11 Kim DH, Kim JH, Choi SH. et al. Differentiation between intramedullary spinal ependymoma and astrocytoma: comparative MRI analysis. Clin Radiol 2014; 69 (01) 29-35
- 12 Asgari N, Skejoe HPB, Lillevang ST, Steenstrup T, Stenager E, Kyvik KO. Modifications of longitudinally extensive transverse myelitis and brainstem lesions in the course of neuromyelitis optica (NMO): a population-based, descriptive study. BMC Neurol 2013; 13: 33
- 13 Krampla W, Aboul-Enein F, Jecel J. et al. Spinal cord lesions in patients with neuromyelitis optica: a retrospective long-term MRI follow-up study. Eur Radiol 2009; 19 (10) 2535-2543
- 14 Klawiter EC, Benzinger T, Roy A, Naismith RT, Parks BJ, Cross AH. Spinal cord ring enhancement in multiple sclerosis. Arch Neurol 2010; 67 (11) 1395-1398
- 15 Zalewski NL, Morris PP, Weinshenker BG. et al. Ring-enhancing spinal cord lesions in neuromyelitis optica spectrum disorders. J Neurol Neurosurg Psychiatry 2017; 88 (03) 218-225
- 16 Zalewski NL, Krecke KN, Weinshenker BG. et al. Central canal enhancement and the trident sign in spinal cord sarcoidosis. Neurology 2016; 87 (07) 743-744
- 17 Rykken JB, Diehn FE, Hunt CH. et al. Rim and flame signs: postgadolinium MRI findings specific for non-CNS intramedullary spinal cord metastases. AJNR Am J Neuroradiol 2013; 34 (04) 908-915
- 18 Hesni S, Baxter D, Saifuddin A. The imaging of cervical spondylotic myeloradiculopathy. Skeletal Radiol 2023; 52 (12) 2341-2365
- 19 Murphy OC, Salazar-Camelo A, Jimenez JA. et al. Clinical and MRI phenotypes of sarcoidosis-associated myelopathy. Neurol Neuroimmunol Neuroinflamm 2020; 7 (04) e722
- 20 Borrelli S, Martire MS, Stölting A. et al. Central vein sign, cortical lesions, and paramagnetic rim lesions for the diagnostic and prognostic workup of multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2024; 11 (04) e200253
- 21 Rykken JB, Diehn FE, Hunt CH. et al. Intramedullary spinal cord metastases: MRI and relevant clinical features from a 13-year institutional case series. AJNR Am J Neuroradiol 2013; 34 (10) 2043-2049
- 22 Stern BJ, Royal III W, Gelfand JM. et al. Definition and consensus diagnostic criteria for neurosarcoidosis: from the Neurosarcoidosis Consortium Consensus Group. JAMA Neurol 2018; 75 (12) 1546-1553
- 23 Browne P, Chandraratna D, Angood C. et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology 2014; 83 (11) 1022-1024
- 24 Thompson AJ, Banwell BL, Barkhof F. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17 (02) 162-173
- 25 Rotstein D, Montalban X. Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat Rev Neurol 2019; 15 (05) 287-300
- 26 Asnafi S, Morris PP, Sechi E. et al. The frequency of longitudinally extensive transverse myelitis in MS: a population-based study. Mult Scler Relat Disord 2020; 37: 101487
- 27 Tartaglino LM, Friedman DP, Flanders AE, Lublin FD, Knobler RL, Liem M. Multiple sclerosis in the spinal cord: MR appearance and correlation with clinical parameters. Radiology 1995; 195 (03) 725-732
- 28 Banwell B, Bennett JL, Marignier R. et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet Neurol 2023; 22 (03) 268-282
- 29 Cobo-Calvo A, Ruiz A, Rollot F. et al; NOMADMUS, KidBioSEP, and OFSEP study groups. Clinical features and risk of relapse in children and adults with myelin oligodendrocyte glycoprotein antibody-associated disease. Ann Neurol 2021; 89 (01) 30-41
- 30 Mariano R, Messina S, Kumar K, Kuker W, Leite MI, Palace J. Comparison of clinical outcomes of transverse myelitis among adults with myelin oligodendrocyte glycoprotein antibody vs aquaporin-4 antibody disease. JAMA Netw Open 2019; 2 (10) e1912732
- 31 Ciron J, Cobo-Calvo A, Audoin B. et al. Frequency and characteristics of short versus longitudinally extensive myelitis in adults with MOG antibodies: a retrospective multicentric study. Mult Scler 2020; 26 (08) 936-944
- 32 Rinaldi S, Davies A, Fehmi J. et al; Australian and New Zealand MOG Study Group. Overlapping central and peripheral nervous system syndromes in MOG antibody-associated disorders. Neurol Neuroimmunol Neuroinflamm 2020; 8 (01) e924
- 33 Sechi E, Krecke KN, Pittock SJ. et al. Frequency and characteristics of MRI-negative myelitis associated with MOG autoantibodies. Mult Scler 2021; 27 (02) 303-308
- 34 Kim HJ, Paul F, Lana-Peixoto MA. et al; Guthy-Jackson Charitable Foundation NMO International Clinical Consortium & Biorepository. MRI characteristics of neuromyelitis optica spectrum disorder: an international update. Neurology 2015; 84 (11) 1165-1173
- 35 Hyun JW, Kim SH, Jeong IH, Lee SH, Kim HJ. Bright spotty lesions on the spinal cord: an additional MRI indicator of neuromyelitis optica spectrum disorder?. J Neurol Neurosurg Psychiatry 2015; 86 (11) 1280-1282
- 36 Kidd DP. Sarcoidosis of the central nervous system: clinical features, imaging, and CSF results. J Neurol 2018; 265 (08) 1906-1915
- 37 Fritz D, van de Beek D, Brouwer MC. Clinical features, treatment and outcome in neurosarcoidosis: systematic review and meta-analysis. BMC Neurol 2016; 16 (01) 220
- 38 Bou GA, Garcia-Santibanez R, Castilho AJ, Hutto SK. Neurosarcoidosis of the cauda equina: clinical course, radiographic and electrodiagnostic findings, response to treatment, and outcomes. Neurol Neuroimmunol Neuroinflamm 2022; 9 (04) e1170
- 39 Soni N, Bathla G, Pillenahalli Maheshwarappa R. Imaging findings in spinal sarcoidosis: a report of 18 cases and review of the current literature. Neuroradiol J 2019; 32 (01) 17-28
- 40 Flanagan EP, Kaufmann TJ, Krecke KN. et al. Discriminating long myelitis of neuromyelitis optica from sarcoidosis. Ann Neurol 2016; 79 (03) 437-447
- 41 Hanly JG, Urowitz MB, Su L. et al; Systemic Lupus International Collaborating Clinics (SLICC). Prospective analysis of neuropsychiatric events in an international disease inception cohort of patients with systemic lupus erythematosus. Ann Rheum Dis 2010; 69 (03) 529-535
- 42 Liang MH, Corzillius M, Bae SC. et al. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum 1999; 42 (04) 599-608
- 43 Martín-Nares E, Hernandez-Molina G, Fragoso-Loyo H. Aquaporin-4-IgG positive neuromyelitis optica spectrum disorder and systemic autoimmune diseases overlap syndrome: a single-center experience. Lupus 2019; 28 (11) 1302-1311
- 44 Sami F, Sami SA, Manadan AM, Arora S. Nationwide analysis of neuromyelitis optica in systemic lupus erythematosus and Sjogren's syndrome. Clin Rheumatol 2024; 43 (01) 59-65
- 45 Katsiari CG, Giavri I, Mitsikostas DD, Yiannopoulou KG, Sfikakis PP. Acute transverse myelitis and antiphospholipid antibodies in lupus. No evidence for anticoagulation. Eur J Neurol 2011; 18 (04) 556-563
- 46 Flores-Silva FD, Longoria-Lozano O, Aguirre-Villarreal D. et al. Natural history of longitudinally extensive transverse myelitis in 35 Hispanic patients with systemic lupus erythematosus: good short-term functional outcome and paradoxical increase in long-term mortality. Lupus 2018; 27 (08) 1279-1286
- 47 Schulz SW, Shenin M, Mehta A, Kebede A, Fluerant M, Derk CT. Initial presentation of acute transverse myelitis in systemic lupus erythematosus: demographics, diagnosis, management and comparison to idiopathic cases. Rheumatol Int 2012; 32 (09) 2623-2627
- 48 Chiganer EH, Lessa CF, Di Pace JL. et al. Transverse myelitis in systemic lupus erythematosus: clinical features and prognostic factors in a large cohort of Latin American patients. J Clin Rheumatol 2021; 27 (6S): S204-S211
- 49 Seaman SC, Bathla G, Park BJ. et al. MRI characteristics and resectability in spinal cord glioma. Clin Neurol Neurosurg 2021; 200: 106321
- 50 Waldron JN, Laperriere NJ, Jaakkimainen L. et al. Spinal cord ependymomas: a retrospective analysis of 59 cases. Int J Radiat Oncol Biol Phys 1993; 27 (02) 223-229
- 51 Coakley KJ, Huston III J, Scheithauer BW, Forbes G, Kelly PJ. Pilocytic astrocytomas: well-demarcated magnetic resonance appearance despite frequent infiltration histologically. Mayo Clin Proc 1995; 70 (08) 747-751
- 52 Costigan DA, Winkelman MD. Intramedullary spinal cord metastasis. A clinicopathological study of 13 cases. J Neurosurg 1985; 62 (02) 227-233
- 53 Madhavan AA, Diehn FE, Rykken JB. et al. The central dot sign : a specific post-gadolinium enhancement feature of intramedullary spinal cord metastases. Clin Neuroradiol 2021; 31 (02) 383-390
- 54 Pinnix CC, Chi L, Jabbour EJ. et al. Dorsal column myelopathy after intrathecal chemotherapy for leukemia. Am J Hematol 2017; 92 (02) 155-160
- 55 Cachia D, Kamiya-Matsuoka C, Pinnix CC. et al. Myelopathy following intrathecal chemotherapy in adults: a single institution experience. J Neurooncol 2015; 122 (02) 391-398
- 56 Scott JM. Folate and vitamin B12. Proc Nutr Soc 1999; 58 (02) 441-448
- 57 Sun HY, Lee JW, Park KS, Wi JY, Kang HS. Spine MR imaging features of subacute combined degeneration patients. Eur Spine J 2014; 23 (05) 1052-1058
- 58 Goodman BP, Bosch EP, Ross MA, Hoffman-Snyder C, Dodick DD, Smith BE. Clinical and electrodiagnostic findings in copper deficiency myeloneuropathy. J Neurol Neurosurg Psychiatry 2009; 80 (05) 524-527
- 59 Kumar N, Ahlskog JE, Klein CJ, Port JD. Imaging features of copper deficiency myelopathy: a study of 25 cases. Neuroradiology 2006; 48 (02) 78-83
- 60 Hedera P, Peltier A, Fink JK, Wilcock S, London Z, Brewer GJ. Myelopolyneuropathy and pancytopenia due to copper deficiency and high zinc levels of unknown origin II. The denture cream is a primary source of excessive zinc. Neurotoxicology 2009; 30 (06) 996-999
- 61 Juhasz-Pocsine K, Rudnicki SA, Archer RL, Harik SI. Neurologic complications of gastric bypass surgery for morbid obesity. Neurology 2007; 68 (21) 1843-1850
- 62 Kumar N, Butz JA, Burritt MF. Clinical significance of the laboratory determination of low serum copper in adults. Clin Chem Lab Med 2007; 45 (10) 1402-1410
- 63 Parks NE. Metabolic and toxic myelopathies. Continuum (Minneap Minn) 2021; 27 (01) 143-162
- 64 Lever EG, Elwes RDC, Williams A, Reynolds EH. Subacute combined degeneration of the cord due to folate deficiency: response to methyl folate treatment. J Neurol Neurosurg Psychiatry 1986; 49 (10) 1203-1207
- 65 Okada A, Koike H, Nakamura T, Watanabe H, Sobue G. Slowly progressive folate-deficiency myelopathy: report of a case. J Neurol Sci 2014; 336 (1-2): 273-275
- 66 Okada E, Matsumoto M, Ichihara D. et al. Aging of the cervical spine in healthy volunteers: a 10-year longitudinal magnetic resonance imaging study. Spine 2009; 34 (07) 706-712
- 67 Malcolm GP. Surgical disorders of the cervical spine: presentation and management of common disorders. J Neurol Neurosurg Psychiatry 2002; 73 (ssuppl 1, suppl 1): i34-i41
- 68 Edwards WC, LaRocca H. The developmental segmental sagittal diameter of the cervical spinal canal in patients with cervical spondylosis. Spine 1983; 8 (01) 20-27
- 69 Flanagan EP, Krecke KN, Marsh RW, Giannini C, Keegan BM, Weinshenker BG. Specific pattern of gadolinium enhancement in spondylotic myelopathy. Ann Neurol 2014; 76 (01) 54-65
- 70 Cho YE, Shin JJ, Kim KS. et al. The relevance of intramedullary high signal intensity and gadolinium (Gd-DTPA) enhancement to the clinical outcome in cervical compressive myelopathy. Eur Spine J 2011; 20 (12) 2267-2274
- 71 Weidauer S, Nichtweiß M, Hattingen E, Berkefeld J. Spinal cord ischemia: aetiology, clinical syndromes and imaging features. Neuroradiology 2015; 57 (03) 241-257
- 72 Zalewski NL, Rabinstein AA, Krecke KN. et al. Spinal cord infarction: clinical and imaging insights from the periprocedural setting. J Neurol Sci 2018; 388: 162-167
- 73 Ke G, Liao H, Chen W. Clinical manifestations and magnetic resonance imaging features of spinal cord infarction. J Neuroradiol 2024; 51 (04) 101158
- 74 Kim BR, Park KS, Kim HJ. et al. Features of non-traumatic spinal cord infarction on MRI: changes over time. PLoS One 2022; 17 (09) e0274821
- 75 Diehn FE, Hunt CH, Lehman VT. et al. Vertebral body infarct and ventral cauda equina enhancement: two confirmatory findings of acute spinal cord infarct. J Neuroimaging 2015; 25 (01) 133-135
- 76 Kobayashi M. The utility of diffusion-weighted imaging in patients with spinal cord infarction: difference from the findings of neuromyelitis optica spectrum disorder. BMC Neurol 2022; 22 (01) 382
- 77 Kister I, Johnson E, Raz E, Babb J, Loh J, Shepherd TM. Specific MRI findings help distinguish acute transverse myelitis of neuromyelitis optica from spinal cord infarction. Mult Scler Relat Disord 2016; 9: 62-67
- 78 Muralidharan R, Saladino A, Lanzino G, Atkinson JL, Rabinstein AA. The clinical and radiological presentation of spinal dural arteriovenous fistula. Spine 2011; 36 (25) E1641-E1647
- 79 Lee J, Lim YM, Suh DC, Rhim SC, Kim SJ, Kim KK. Clinical presentation, imaging findings, and prognosis of spinal dural arteriovenous fistula. J Clin Neurosci 2016; 26: 105-109
- 80 Hurst RW, Kenyon LC, Lavi E, Raps EC, Marcotte P, Hurst RW. Spinal dural arteriovenous fistula: the pathology of venous hypertensive myelopathy. Neurology 1995; 45 (07) 1309-1313
- 81 Brinjikji W, Colombo E, Cloft HJ, Lanzino G. Clinical and imaging characteristics of spinal dural arteriovenous fistulas and spinal epidural arteriovenous fistulas. Neurosurgery 2021; 88 (03) 666-673
- 82 Morris JM. Imaging of dural arteriovenous fistula. Radiol Clin North Am 2012; 50 (04) 823-839
- 83 Murphy OC, Messacar K, Benson L. et al; AFM working group. Acute flaccid myelitis: cause, diagnosis, and management. Lancet 2021; 397 (10271): 334-346
- 84 Okumura A, Mori H, Fee Chong P. et al; Acute Flaccid Myelitis Collaborative Study Investigators. Serial MRI findings of acute flaccid myelitis during an outbreak of enterovirus D68 infection in Japan. Brain Dev 2019; 41 (05) 443-451
- 85 Gordon-Lipkin E, Muñoz LS, Klein JL, Dean J, Izbudak I, Pardo CA. Comparative quantitative clinical, neuroimaging, and functional profiles in children with acute flaccid myelitis at acute and convalescent stages of disease. Dev Med Child Neurol 2019; 61 (03) 366-375
- 86 Sartoretti-Schefer S, Blättler T, Wichmann W. Spinal MRI in vacuolar myelopathy, and correlation with histopathological findings. Neuroradiology 1997; 39 (12) 865-869
- 87 Chong J, Di Rocco A, Tagliati M, Danisi F, Simpson DM, Atlas SW. MR findings in AIDS-associated myelopathy. AJNR Am J Neuroradiol 1999; 20 (08) 1412-1416
- 88 Shimojima Y, Yazaki M, Kaneko K. et al. Characteristic spinal MRI findings of HIV-associated myelopathy in an AIDS patient. Intern Med 2005; 44 (07) 763-764
- 89 Umehara F, Tokunaga N, Hokezu Y. et al. Relapsing cervical cord lesions on MRI in patients with HTLV-I-associated myelopathy. Neurology 2006; 66 (02) 289
- 90 Alcindor F, Valderrama R, Canavaggio M. et al. Imaging of human T-lymphotropic virus type I-associated chronic progressive myeloneuropathies. Neuroradiology 1992; 35 (01) 69-74
- 91 Umehara F, Nose H, Saito M. et al. Abnormalities of spinal magnetic resonance images implicate clinical variability in human T-cell lymphotropic virus type I-associated myelopathy. J Neurovirol 2007; 13 (03) 260-267
- 92 Yamamoto F, Yamashita S, Yamamura A. et al. Abnormal spinal MRI findings in human T-cell lymphotrophic virus type I-associated myelopathy. Clin Neurol Neurosurg 2009; 111 (07) 624-628
- 93 Kalita J, Vibhute A, Kumar M, Misra UK. Myelopathy in West Nile virus encephalitis: report of a case and review of literature. J Spinal Cord Med 2020; 43 (04) 444-448
- 94 Jeha LE, Sila CA, Lederman RJ, Prayson RA, Isada CM, Gordon SM. West Nile virus infection: a new acute paralytic illness. Neurology 2003; 61 (01) 55-59
- 95 de Seze J, Lanctin C, Lebrun C. et al. Idiopathic acute transverse myelitis: application of the recent diagnostic criteria. Neurology 2005; 65 (12) 1950-1953
- 96 Hutto SK, Cavanagh JJ. Advances in diagnosis and management of atypical demyelinating diseases. Med Clin North Am 2025; 109 (02) 425-441
- 97 Transverse Myelitis Consortium Working Group. Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 2002; 59 (04) 499-505
- 98 Goh C, Desmond PM, Phal PM. MRI in transverse myelitis. J Magn Reson Imaging 2014; 40 (06) 1267-1279
- 99 Alper G, Petropoulou KA, Fitz CR, Kim Y. Idiopathic acute transverse myelitis in children: an analysis and discussion of MRI findings. Mult Scler 2011; 17 (01) 74-80