Subscribe to RSS
DOI: 10.1055/a-2604-7425
Rectus femoris and vastus intermedius muscle asymmetries following ACL reconstruction

Abstract
Anterior cruciate ligament reconstruction induces deleterious neuromuscular alterations. Musculoskeletal ultrasonography provides an accessible method to quantify muscle size and quality in patients with anterior cruciate ligament reconstruction who suffer from persistent skeletal muscle atrophy. This study compares rectus femoris and vastus intermedius muscle thicknesses and echo intensities using extended field-of-view ultrasonography in individuals with a history of anterior cruciate ligament reconstruction versus non-injured controls. Twenty-six individuals with previous anterior cruciate ligament reconstruction and 20 controls were participated in this study. Extended field-of-view ultrasonography was used to analyze the muscle thickness in the proximal, middle, and distal regions of the thigh, while the echo intensity was measured to assess the muscle quality. Findings indicate significant asymmetries in the muscle thickness (p<0.01 and η p 2=0.312) and echo intensity (p=0.024 and η p 2=0.111) for the anterior cruciate ligament reconstruction group, favoring the uninvolved leg, with no site-specific differences between groups. Results show muscle-specific size differences, with greater vastus intermedius muscle thickness than rectus femoris muscle thickness in controls (p<0.01 and d=0.609), but no difference between muscles in either leg of the anterior cruciate ligament reconstruction group (p>0.05 and d=0.094). Overall, these results highlight unique skeletal muscle changes between the biarticular rectus femoris and the monoarticular vastus intermedius following anterior cruciate ligament reconstruction, likely reflecting postoperative deficiencies in knee extensor function.
Publication History
Received: 11 December 2024
Accepted after revision: 08 May 2025
Accepted Manuscript online:
08 May 2025
Article published online:
16 June 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Barber-Westin S, Noyes FR.. One in 5 Athletes Sustain Reinjury Upon Return to High-Risk Sports After ACL Reconstruction: A Systematic Review in 1239 Athletes Younger Than 20 Years. Sports Health Multidiscip Approach 2020; 12: 587-597
- 2 Kuenze CM, Blemker SS, Hart JM.. Quadriceps function relates to muscle size following ACL reconstruction. J Orthop Res 2016; 34: 1656-1662
- 3 Lepley AS, Grooms DR, Burland JP, Davi SM, Kinsella-Shaw JM, Lepley LK.. Quadriceps muscle function following anterior cruciate ligament reconstruction: systemic differences in neural and morphological characteristics. Exp Brain Res 2019; 237: 1267-1278
- 4 Schilaty ND, Nagelli C, Bates NA. et al. Incidence of Second Anterior Cruciate Ligament Tears and Identification of Associated Risk Factors From 2001 to 2010 Using a Geographic Database. Orthop J Sports Med 2017; 5: 2325967117724196
- 5 Schmitt LC, Paterno MV, Hewett TE.. The Impact of Quadriceps Femoris Strength Asymmetry on Functional Performance at Return to Sport Following Anterior Cruciate Ligament Reconstruction. J Orthop Sports Phys Ther 2012; 42: 750-759
- 6 Lepley LK.. Deficits in Quadriceps Strength and Patient-Oriented Outcomes at Return to Activity After ACL Reconstruction: A Review of the Current Literature. Sports Health Multidiscip Approach 2015; 7: 231-238
- 7 Paterno MV, Huang B, Thomas S, Hewett TE, Schmitt LC.. Clinical Factors That Predict a Second ACL Injury After ACL Reconstruction and Return to Sport: Preliminary Development of a Clinical Decision Algorithm. Orthop J Sports Med 2017; 5: 2325967117745279
- 8 Mattacola CG, Perrin DH, Gansneder BM, Gieck JH, Saliba EN, McCue FC.. Strength, Functional Outcome, and Postural Stability After Anterior Cruciate Ligament Reconstruction. J Athl Train 2002; 37: 262-268
- 9 Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA.. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med 2016; 50: 804-808
- 10 Webster KE, McPherson AL, Hewett TE, Feller JA.. Factors Associated With a Return to Preinjury Level of Sport Performance After Anterior Cruciate Ligament Reconstruction Surgery. Am J Sports Med 2019; 47: 2557-2562
- 11 Schmitt LC, Paterno MV, Ford KR, Myer GD, Hewett TE.. Strength Asymmetry and Landing Mechanics at Return to Sport after Anterior Cruciate Ligament Reconstruction. Med Sci Sports Exerc 2015; 47: 1426-1434
- 12 Anderson O.K., Redinger AL, Mintz EL. et al. Musculoskeletal Tissue Asymmetries Following Anterior Cruciate Ligament Reconstruction. JOSPT Open 2025; 3: 59-68
- 13 Garcia SA, Curran MT, Palmieri-Smith RM.. Longitudinal Assessment of Quadriceps Muscle Morphology Before and After Anterior Cruciate Ligament Reconstruction and Its Associations With Patient-Reported Outcomes. Sports Health Multidiscip Approach 2020; 12: 271-278
- 14 Garcia SA, Moffit TJ, Vakula MN, Holmes SC, Montgomery MM, Pamukoff DN.. Quadriceps Muscle Size, Quality, and Strength and Self-Reported Function in Individuals With Anterior Cruciate Ligament Reconstruction. J Athl Train 2020; 55: 246-254
- 15 Norte GE, Knaus KR, Kuenze C. et al. MRI-Based Assessment of Lower-Extremity Muscle Volumes in Patients Before and After ACL Reconstruction. J Sport Rehabil 2018; 27: 201-212
- 16 Lee J-H, Cheon S, Jun H-P, Huang YL, Chang E.. Bilateral Comparisons of Quadriceps Thickness after Anterior Cruciate Ligament Reconstruction. Medicina (Mex) 2020; 56: 335
- 17 Dutaillis B, Maniar N, Opar DA, Hickey JT, Timmins RG.. Lower Limb Muscle Size after Anterior Cruciate Ligament Injury: A Systematic Review and Meta-Analysis. Sports Med 2021; 51: 1209-1226
- 18 Birchmeier T, Lisee C, Kane K, Brazier B, Triplett A, Kuenze C.. Quadriceps Muscle Size Following ACL Injury and Reconstruction: A Systematic Review. J Orthop Res 2020; 38: 598-608
- 19 Tourville TW, Voigt TB, Choquette RH. et al. Skeletal muscle cellular contractile dysfunction after anterior cruciate ligament reconstruction contributes to quadriceps weakness at 6-month follow-up. J Orthop Res 2022; 40: 727-737
- 20 Fry CS, Johnson DL, Ireland ML, Noehren B.. ACL injury reduces satellite cell abundance and promotes fibrogenic cell expansion within skeletal muscle: ACL INJURY INDUCES MUSCLE MALADAPTATIONS. J Orthop Res 2017; 35: 1876-1885
- 21 Noehren B, Andersen A, Hardy P. et al. Cellular and Morphological Alterations in the Vastus Lateralis Muscle as the Result of ACL Injury and Reconstruction. J Bone Jt Surg 2016; 98: 1541-1547
- 22 Stock MS, Thompson BJ.. Echo intensity as an indicator of skeletal muscle quality: applications, methodology, and future directions. Eur J Appl Physiol 2021; 121: 369-380
- 23 Mangine GT, Redd MJ, Gonzalez AM. et al. Resistance training does not induce uniform adaptations to quadriceps. PLoS One 2018; 13: e0198304
- 24 Narici MV, Hoppeler H, Kayser B. et al. Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand 1996; 157: 175-186
- 25 Nunes JP, Blazevich AJ, Schoenfeld BJ. et al. Determining Changes in Muscle Size and Architecture After Exercise Training: One Site Does Not Fit all. J Strength Cond Res 2024; 38: 787-790
- 26 Hjaltadóttir AÞ, Hafsteinsson D, Árnason Á, Briem K.. Musculoskeletal ultrasound imaging of proximal and distal hamstrings cross sectional area in individuals with history of anterior cruciate ligament reconstruction. Physiother Theory Pract 2024; 40: 487-493
- 27 Morris N, Jordan MJ, Sumar S, Adrichem B, Heard M, Herzog W.. Joint angle-specific impairments in rate of force development, strength, and muscle morphology after hamstring autograft. Transl Sports Med 2021; 4: 104-114
- 28 Miokovic T, Armbrecht G, Felsenberg D, Belavý DL.. Heterogeneous atrophy occurs within individual lower limb muscles during 60 days of bed rest. J Appl Physiol Bethesda Md (1985) 2012; 113: 1545-1559
- 29 Carr JC, Gerstner GR, Voskuil CC. et al. The Influence of Sonographer Experience on Skeletal Muscle Image Acquisition and Analysis. J Funct Morphol Kinesiol 2021; 6: 91
- 30 Balshaw TG, Maden-Wilkinson TM, Massey GJ, Folland JP.. The Human Muscle Size and Strength Relationship: Effects of Architecture, Muscle Force, and Measurement Location. Med Sci Sports Exerc 2021; 53: 2140-2151
- 31 Oranchuk DJ, Stock MS, Nelson AR, Storey AG, Cronin JB.. Variability of regional quadriceps echo intensity in active young men with and without subcutaneous fat correction. Appl Physiol Nutr Metab 2020; 45: 745-752
- 32 Stock MS, Oranchuk DJ, Burton AM, Phan DC.. Age-, sex-, and region-specific differences in skeletal muscle size and quality. Appl Physiol Nutr Metab 2020; 45: 1253-1260
- 33 JASP Team. JASP Department of Psychological Methods, University of Amsterdam 2024
- 34 White MS, Ogier AC, Chenevert TL. et al. Beyond weakness: Exploring intramuscular fat and quadriceps atrophy in ACLR recovery. J Orthop Res 2024; 42: 2485-2494
- 35 Lindström M, Strandberg S, Wredmark T, Felländer-Tsai L, Henriksson M.. Functional and muscle morphometric effects of ACL reconstruction. A prospective CT study with 1 year follow-up. Scand J Med Sci Sports 2013; 23: 431-442
- 36 Thomas AC, Wojtys EM, Brandon C, Palmieri-Smith RM.. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport 2016; 19: 7-11
- 37 Arangio GA, Chen C, Kalady M, Reed JF.. Thigh Muscle Size and Strength After Anterior Cruciate Ligament Reconstruction and Rehabilitation. J Orthop Sports Phys Ther 1997; 26: 238-243
- 38 Kuenze CM, Hertel J, Weltman A, Diduch D, Saliba SA, Hart JM.. Persistent Neuromuscular and Corticomotor Quadriceps Asymmetry After Anterior Cruciate Ligament Reconstruction. J Athl Train 2015; 50: 303-312
- 39 Lisee C, Lepley AS, Birchmeier T, O'Hagan K, Kuenze C.. Quadriceps Strength and Volitional Activation After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Sports Health Multidiscip Approach 2019; 11: 163-179
- 40 Urbach D, Nebelung W, Becker R, Awiszus F.. Effects of reconstruction of the anterior cruciate ligament on voluntary activation of quadriceps femoris: A PROSPECTIVE TWITCH INTERPOLATION STUDY. J Bone Joint Surg Br 2001; 83-B: 1104-1110
- 41 Norte GE, Hertel J, Saliba SA, Diduch DR, Hart JM.. Quadriceps Neuromuscular Function in Patients With Anterior Cruciate Ligament Reconstruction With or Without Knee Osteoarthritis: A Cross-Sectional Study. J Athl Train 2018; 53: 475-485
- 42 Yang D, Morris SF.. Neurovascular anatomy of the rectus femoris muscle related to functioning muscle transfer. Plast Reconstr Surg 1999; 104: 102-106
- 43 Sung DH, Jung J-Y, Kim H-D, Ha BJ, Ko YJ.. Motor branch of the rectus femoris: anatomic location for selective motor branch block in stiff-legged gait. Arch Phys Med Rehabil 2003; 84: 1028-1031
- 44 Carr JC, Stock MS, Hernandez JM, Ortegon JR Jr, Mota JA.. Additional insight into biarticular muscle function: The influence of hip flexor fatigue on rectus femoris activity at the knee. J Electromyogr Kinesiol 2018; 42: 36-43
- 45 Schilaty ND, McPherson AL, Nagai T, Bates NA. Arthrogenic muscle inhibition manifests in thigh musculature motor unit characteristics after anterior cruciate ligament injury. Eur J Sport Sci 2023; 23: 840-850
- 46 Rice DA, McNair PJ.. Quadriceps Arthrogenic Muscle Inhibition: Neural Mechanisms and Treatment Perspectives. Semin Arthritis Rheum 2010; 40: 250-266
- 47 Palmieri-Smith RM, Thomas AC, Wojtys EM.. Maximizing Quadriceps Strength After ACL Reconstruction. Clin Sports Med 2008; 27: 405-424
- 48 Ingersoll CD, Grindstaff TL, Pietrosimone BG, Hart JM.. Neuromuscular Consequences of Anterior Cruciate Ligament Injury. Clin Sports Med 2008; 27: 383-404
- 49 Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG.. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: A 6-month longitudinal investigation. Scand J Med Sci Sports 2015; 25: 828-839
- 50 Palmieri-Smith RM, Lepley LK.. Quadriceps Strength Asymmetry After Anterior Cruciate Ligament Reconstruction Alters Knee Joint Biomechanics and Functional Performance at Time of Return to Activity. Am J Sports Med 2015; 43: 1662-1669
- 51 Nuccio S, Del Vecchio A, Casolo A. et al. Deficit in knee extension strength following anterior cruciate ligament reconstruction is explained by a reduced neural drive to the vasti muscles. J Physiol 2021; 599: 5103-5120
- 52 MacLeod TD, Snyder-Mackler L, Buchanan TS.. Differences in Neuromuscular Control and Quadriceps Morphology Between Potential Copers and Noncopers Following Anterior Cruciate Ligament Injury. J Orthop Sports Phys Ther 2014; 44: 76-84
- 53 Grozier C, Keen M, Collins K. et al. Rectus Femoris Ultrasound Echo Intensity Is a Valid Estimate of Percent Intramuscular Fat in Patients Following Anterior Cruciate Ligament Reconstruction. Ultrasound Med Biol 2023; 49: 2590-2595
- 54 Pillen S, Tak RO, Zwarts MJ. et al. Skeletal Muscle Ultrasound: Correlation Between Fibrous Tissue and Echo Intensity. Ultrasound Med Biol 2009; 35: 443-446
- 55 Jungmann PM, Baum T, Nevitt MC. et al. Degeneration in ACL Injured Knees with and without Reconstruction in Relation to Muscle Size and Fat Content—Data from the Osteoarthritis Initiative. PLoS One 2016; 11: e0166865
- 56 Anderson OK, Redinger AL, Mintz EL. et al. Musculoskeletal Tissue Asymmetries Following Anterior Cruciate Ligament Reconstruction. JOSPT Open 2025; 3: 59-68
- 57 Andrushko JW, Carr JC, Farthing JP. et al. Potential role of cross-education in early-stage rehabilitation after anterior cruciate ligament reconstruction. Br J Sports Med 2023; 57: 1474-1475