Subscribe to RSS
DOI: 10.1055/a-2605-8706
Sleep–Wake Disorders After Traumatic Brain Injury: Pathophysiology, Clinical Management, and Future
Funding None.

Abstract
After experiencing a traumatic brain injury (TBI), the majority of patients will develop sleep–wake disorders (SWD). These can include insomnia, posttraumatic pleiosomnia (increased sleep need), excessive daytime sleepiness (EDS), obstructive and/or central sleep apnea, circadian SWD, and a variety of parasomnias. Untreated SWD may impede the recovery process and can negatively impact mood, metabolic health, cognitive function, and immune function among other processes. Importantly, these patients tend to misperceive their posttraumatic sleep problems. Consequently, interviews performed in standard clinical practice may not sufficiently capture SWD patients, potentially compromising safety and productivity. In this up-to-date review, we outline the state of current TBI-related SWD, highlighting proposed mechanisms, treatment modalities, and areas for further clinical investigation. We discuss data supporting the role of slow wave sleep in the enhancement of neural recovery and strengthening of healthy neural circuits. We also examine the utility of enhanced cohort recruitment and SWD biomarker discovery via the use of social media, smart devices, and data-sharing networks, and call for increased research in the intersection of TBI and SWD.
Publication History
Article published online:
04 June 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Wickwire EM, Williams SG, Roth T. et al. Sleep, sleep disorders, and mild traumatic brain injury. What we know and what we need to know: findings from a national working group. Neurotherapeutics 2016; 13 (02) 403-417
- 2 Kou Z, VandeVord PJ. Traumatic white matter injury and glial activation: from basic science to clinics. Glia 2014; 62 (11) 1831-1855
- 3 Griesbach GSHDA, Hovda DA. Cellular and molecular neuronal plasticity. Handb Clin Neurol 2015; 128: 681-690
- 4 Baumann CR. Sleep and traumatic brain injury. Sleep Med Clin 2016; 11 (01) 19-23
- 5 Ouellet MC, Beaulieu-Bonneau S, Morin CM. Sleep-wake disturbances after traumatic brain injury. Lancet Neurol 2015; 14 (07) 746-757
- 6 Valko PO, Gavrilov YV, Yamamoto M. et al. Damage to arousal-promoting brainstem neurons with traumatic brain injury. Sleep 2016; 39 (06) 1249-1252
- 7 Grima N, Ponsford J, Rajaratnam SM, Mansfield D, Pase MP. Sleep disturbances in traumatic brain injury: a meta-analysis. J Clin Sleep Med 2016; 12 (03) 419-428
- 8 Economo CV. Sleep as a problem of localization. J Nerv Ment Dis 1930; 71 (03) 249-259
- 9 Baumann CRSR, Stocker R, Imhof HG. et al. Hypocretin-1 (orexin A) deficiency in acute traumatic brain injury. Neurology 2005; 65 (01) 147-149
- 10 Poryazova R, Hug D, Baumann CR. Narcolepsy and traumatic brain injury: cause or consequence?. Sleep Med 2011; 12 (08) 811
- 11 Shekleton JAPDL, Parcell DL, Redman JR, Phipps-Nelson J, Ponsford JL, Rajaratnam SM. Sleep disturbance and melatonin levels following traumatic brain injury. Neurology 2010; 74 (21) 1732-1738
- 12 Rowe RKSM, Striz M, Bachstetter AD. et al. Diffuse brain injury induces acute post-traumatic sleep. PLoS One 2014; 9 (01) e82507
- 13 Lavigne G, Khoury S, Chauny JM, Desautels A. Pain and sleep in post-concussion/mild traumatic brain injury. Pain 2015; 156 (Suppl. 01) S75-S85
- 14 Sinha SS. Trauma-induced insomnia: a novel model for trauma and sleep research. Sleep Med Rev 2016; 25: 74-83
- 15 Mollayeva T, Mollayeva S, Colantonio A. The risk of sleep disorder among persons with mild traumatic brain injury. Curr Neurol Neurosci Rep 2016; 16 (06) 55
- 16 Leng Y, Byers AL, Barnes DE, Peltz CB, Li Y, Yaffe K. Traumatic brain injury and incidence risk of sleep disorders in nearly 200,000 US veterans. Neurology 2021; 96 (13) e1792-e1799
- 17 Zhou Y, Greenwald BD. Update on insomnia after mild traumatic brain injury. Brain Sci 2018; 8 (12) 223
- 18 Fichtenberg NL, Millis SR, Mann NR, Zafonte RD, Millard AE. Factors associated with insomnia among post-acute traumatic brain injury survivors. Brain Inj 2000; 14 (07) 659-667
- 19 Hu T, Hunt C, Ouchterlony D. Is age associated with the severity of post-mild traumatic brain injury symptoms?. Can J Neurol Sci 2017; 44 (04) 384-390
- 20 Werner JK, Albrecht J, Capaldi VF. et al; TRACK-TBI Investigators. Association of biomarkers of neuronal injury and inflammation with insomnia trajectories after traumatic brain injury: a TRACK-TBI study. Neurology 2024; 102 (08) e209269
- 21 Baumann CRWE, Werth E, Stocker R, Ludwig S, Bassetti CL. Sleep-wake disturbances 6 months after traumatic brain injury: a prospective study. Brain 2007; 130 (Pt 7): 1873-1883
- 22 Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016; 538 (7623): 51-59
- 23 de Lecea L, Kilduff TS, Peyron C. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 1998; 95 (01) 322-327
- 24 Mahoney CE, Cogswell A, Koralnik IJ, Scammell TE. The neurobiological basis of narcolepsy. Nat Rev Neurosci 2019; 20 (02) 83-93
- 25 Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 2007; 8 (03) 171-181
- 26 Etori K, Saito YC, Tsujino N, Sakurai T. Effects of a newly developed potent orexin-2 receptor-selective antagonist, compound 1 m, on sleep/wakefulness states in mice. Front Neurosci 2014; 8: 8
- 27 Szymusiak R, McGinty D. Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci 2008; 1129 (01) 275-286
- 28 Sakai K, Crochet S. Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake-sleep states. Neuroscience 2001; 104 (04) 1141-1155
- 29 Monti JM. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med Rev 2010; 14 (05) 319-327
- 30 Monti JMJH, Jantos H. The role of serotonin 5-HT7 receptor in regulating sleep and wakefulness. Rev Neurosci 2014; 25 (03) 429-437
- 31 Gallopin T, Luppi PH, Cauli B. et al. The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience 2005; 134 (04) 1377-1390
- 32 Sangare A, Dubourget R, Geoffroy H, Gallopin T, Rancillac A. Serotonin differentially modulates excitatory and inhibitory synaptic inputs to putative sleep-promoting neurons of the ventrolateral preoptic nucleus. Neuropharmacology 2016; 109: 29-40
- 33 Frank MGSMP, Stryker MP, Tecott LH. Sleep and sleep homeostasis in mice lacking the 5-HT2c receptor. Neuropsychopharmacology 2002; 27 (05) 869-873
- 34 Sharpley ALEJM, Elliott JM, Attenburrow MJ, Cowen PJ. Slow wave sleep in humans: role of 5-HT2A and 5-HT2C receptors. Neuropharmacology 1994; 33 (3-4): 467-471
- 35 Martin JRBM, Bös M, Jenck F. et al. 5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential. J Pharmacol Exp Ther 1998; 286 (02) 913-924
- 36 Lim ASP, Ellison BA, Wang JL. et al. Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer's disease. Brain 2014; 137 (Pt 10): 2847-2861
- 37 Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol 2004; 73 (06) 379-396
- 38 Klose M, Stochholm K, Janukonyté J. et al. Prevalence of posttraumatic growth hormone deficiency is highly dependent on the diagnostic set-up: results from the Danish national study on posttraumatic hypopituitarism. J Clin Endocrinol Metab 2014; 99 (01) 101-110
- 39 González JAIP, Iordanidou P, Strom M, Adamantidis A, Burdakov D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun 2016; 7: 11395
- 40 Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A. A review of melatonin, its receptors and drugs. Eurasian J Med 2016; 48 (02) 135-141
- 41 Pilorz V, Tam SK, Hughes S. et al. Melanopsin regulates both sleep-promoting and arousal-promoting responses to light. PLoS Biol 2016; 14 (06) e1002482
- 42 Comai S, Ochoa-Sanchez R, Gobbi G. Sleep-wake characterization of double MT1/MT2 receptor knockout mice and comparison with MT1 and MT2 receptor knockout mice. Behav Brain Res 2013; 243: 231-238
- 43 Brown RE, Spratt TJ, Kaplan GB. Translational approaches to influence sleep and arousal. Brain Res Bull 2022; 185: 140-161
- 44 Benleulmi-Chaachoua A, Chen L, Sokolina K. et al. Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons. J Pineal Res 2016; 60 (01) 95-108
- 45 Sherin JESPJ, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science 1996; 271 (5246): 216-219
- 46 Boeve BFSMH, Silber MH, Saper CB. et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 2007; 130 (Pt 11): 2770-2788
- 47 Landvater J, Kim S, Caswell K. et al. Traumatic brain injury and sleep in military and veteran populations: a literature review. NeuroRehabilitation 2024; 55 (03) 245-270
- 48 Parcell DLPJL, Ponsford JL, Redman JR, Rajaratnam SM. Poor sleep quality and changes in objectively recorded sleep after traumatic brain injury: a preliminary study. Arch Phys Med Rehabil 2008; 89 (05) 843-850
- 49 Imbach LLBF, Büchele F, Valko PO. et al. Sleep-wake disorders persist 18 months after traumatic brain injury but remain underrecognized. Neurology 2016; 86 (21) 1945-1949
- 50 Skopin MDKSV, Kabadi SV, Viechweg SS, Mong JA, Faden AI. Chronic decrease in wakefulness and disruption of sleep-wake behavior after experimental traumatic brain injury. J Neurotrauma 2015; 32 (05) 289-296
- 51 Kaufmann CN, Orff HJ, Moore RC, Delano-Wood L, Depp CA, Schiehser DM. Psychometric characteristics of the insomnia severity index in veterans with history of traumatic brain injury. Behav Sleep Med 2019; 17 (01) 12-18
- 52 Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci 2010; 11 (02) 114-126
- 53 Wright MJ, Monti MM, Lutkenhoff ES. et al. Memory in repeat sports-related concussive injury and single-impact traumatic brain injury. Brain Inj 2020; 34 (12) 1666-1673
- 54 Morrow EL, Mayberry LS, Duff MC. The growing gap: a study of sleep, encoding, and consolidation of new words in chronic traumatic brain injury. Neuropsychologia 2023; 184: 108518
- 55 Howell SN, Griesbach GS. Sex differences in sleep architecture after traumatic brain injury: potential implications on short-term episodic memory and recovery. Neurotrauma Rep 2024; 5 (01) 3-12
- 56 Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014; 81 (01) 12-34
- 57 Tononi G, Cirelli C. Sleep and synaptic down-selection. Eur J Neurosci 2020; 51 (01) 413-421
- 58 Sanchez E, Blais H, Duclos C. et al. Sleep from acute to chronic traumatic brain injury and cognitive outcomes. Sleep 2022; 45 (08) zsac123
- 59 Norimoto H, Makino K, Gao M. et al. Hippocampal ripples down-regulate synapses. Science 2018; 359 (6383): 1524-1527
- 60 Suppermpool A, Lyons DG, Broom E, Rihel J. Sleep pressure modulates single-neuron synapse number in zebrafish. Nature 2024; 629 (8012): 639-645
- 61 Yang Y, Liang W, Wang Y. et al. Hippocampal atrophy in neurofunctional subfields in insomnia individuals. Front Neurol 2022; 13: 1014244
- 62 Atkins CM. Decoding hippocampal signaling deficits after traumatic brain injury. Transl Stroke Res 2011; 2 (04) 546-555
- 63 Karelina K, Schneiderman K, Shah S. et al. Moderate intensity treadmill exercise increases survival of newborn hippocampal neurons and improves neurobehavioral outcomes after traumatic brain injury. J Neurotrauma 2021; 38 (13) 1858-1869
- 64 Imbach LLVPO, Valko PO, Li T. et al. Increased sleep need and daytime sleepiness 6 months after traumatic brain injury: a prospective controlled clinical trial. Brain 2015; 138 (Pt 3): 726-735
- 65 Xie L, Kang H, Xu Q. et al. Sleep drives metabolite clearance from the adult brain. Science 2013; 342 (6156): 373-377
- 66 Ellenbogen JMHJC, Hulbert JC, Jiang Y, Stickgold R. The sleeping brain's influence on verbal memory: boosting resistance to interference. PLoS One 2009; 4 (01) e4117
- 67 Dijk DJ. Slow-wave sleep, diabetes, and the sympathetic nervous system. Proc Natl Acad Sci U S A 2008; 105 (04) 1107-1108
- 68 Morawska MMBF, Büchele F, Moreira CG, Imbach LL, Noain D, Baumann CR. Sleep modulation alleviates axonal damage and cognitive decline after rodent traumatic brain injury. J Neurosci 2016; 36 (12) 3422-3429
- 69 Gao B, Cam E, Jaeger H, Zunzunegui C, Sarnthein J, Bassetti CL. Sleep disruption aggravates focal cerebral ischemia in the rat. Sleep 2010; 33 (07) 879-887
- 70 Sandsmark DKKMA, Kumar MA, Woodward CS, Schmitt SE, Park S, Lim MM. Sleep features on continuous electroencephalography predict rehabilitation outcomes after severe traumatic brain injury. J Head Trauma Rehabil 2016; 31 (02) 101-107
- 71 Yan G, Wei Y, Wang D, Wang D, Ren H, Hou B. Characteristics and neural mechanisms of sleep-wake disturbances after traumatic brain injury. J Neurotrauma 2024; 41 (15–16): 1813-1826
- 72 Kelly DFMDL, McArthur DL, Levin H. et al. Neurobehavioral and quality of life changes associated with growth hormone insufficiency after complicated mild, moderate, or severe traumatic brain injury. J Neurotrauma 2006; 23 (06) 928-942
- 73 Vedantam A, Brennan J, Levin HS. et al. Early versus late profiles of inflammatory cytokines after mild traumatic brain injury and their association with neuropsychological outcomes. J Neurotrauma 2021; 38 (01) 53-62
- 74 Valle VI, Mafla-España MA, Silva J, Cauli O. Actigraphy analysis of sleep associates with salivary IL-6 concentration in institutionalized older individuals. Diseases 2023; 11 (03) 93
- 75 Koreki A, Sado M, Mitsukura Y. et al. The association between salivary IL-6 and poor sleep quality assessed using Apple watches in stressed workers in Japan. Sci Rep 2024; 14 (01) 22620
- 76 Golshah A, Sadeghi M, Sadeghi E. Evaluation of serum/plasma levels of interleukins (IL-6, IL-12, IL-17, IL-18, and IL-23) in adults and children with obstructive sleep apnea: a systematic review, meta-analysis, and trial sequential analysis. J Interferon Cytokine Res 2024; 44 (07) 300-315
- 77 Zhang P, Li YX, Zhang ZZ. et al. Astroglial mechanisms underlying chronic insomnia disorder: a clinical study. Nat Sci Sleep 2020; 12: 693-704
- 78 Papa L, Brophy GM, Welch RD. et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol 2016; 73 (05) 551-560
- 79 FDA authorizes marketing of first blood test to aid in the evaluation of concussion in adults. Accessed April 25, 2025 at: https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-first-blood-test-aid-evaluation-concussion-adults
- 80 Bell A, Hewins B, Bishop C. et al. Traumatic brain injury, sleep, and melatonin-intrinsic changes with therapeutic potential. Clocks Sleep 2023; 5 (02) 177-203
- 81 Barlow KM, Girgulis KA, Goldstein G. et al. Sleep parameters and overnight urinary melatonin production in children with persistent post-concussion symptoms. Pediatr Neurol 2020; 105: 27-34
- 82 Cox RCOBO, Olatunji BO. A systematic review of sleep disturbance in anxiety and related disorders. J Anxiety Disord 2016; 37: 104-129
- 83 Lavie P. Sleep disturbances in the wake of traumatic events. N Engl J Med 2001; 345 (25) 1825-1832
- 84 Koffel E, Kroenke K, Bair MJ, Leverty D, Polusny MA, Krebs EE. The bidirectional relationship between sleep complaints and pain: analysis of data from a randomized trial. Health Psychol 2016; 35 (01) 41-49
- 85 Rose ARCPG, Catcheside PG, McEvoy RD. et al. Sleep disordered breathing and chronic respiratory failure in patients with chronic pain on long term opioid therapy. J Clin Sleep Med 2014; 10 (08) 847-852
- 86 Linselle M, Sommet A, Bondon-Guitton E. et al. Can drugs induce or aggravate sleep apneas? A case-noncase study in VigiBase, the WHO pharmacovigilance database. Fundam Clin Pharmacol 2017; 31 (03) 359-366
- 87 Saatman KED A C, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT. Workshop Scientific Team and Advisory Panel Members. Classification of traumatic brain injury for targeted therapies. J Neurotrauma 2008; 25 (07) 719-738
- 88 Tortella FC. Challenging the paradigms of experimental TBI models: from preclinical to clinical practice. Methods Mol Biol 2016; 1462: 735-740
- 89 Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974; 2 (7872): 81-84
- 90 VA/DoD Clinical Practice Guideline for the Management and Rehabilitation of Post-Acute Mild Traumatic Brain Injury. Accessed January 17, 2025 at: https://www.healthquality.va.gov/guidelines/Rehab/mtbi/VADoDmTBICPGFinal508.pdf
- 91 Menon DKSK, Schwab K, Wright DW, Maas AI. Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil 2010; 91 (11) 1637-1640
- 92 Hawryluk GWMGT, Manley GT. Classification of traumatic brain injury: past, present, and future. Handb Clin Neurol 2015; 127: 15-21
- 93 Highsmith JS A J, Everhart DE. A review of assessment of sleep disruption in adults following traumatic brain injury. Int J Neurorehabil 2016; 3 (04) 1-10
- 94 Clinchot DMBJ, Bogner J, Mysiw WJ, Fugate L, Corrigan J. Defining sleep disturbance after brain injury. Am J Phys Med Rehabil 1998; 77 (04) 291-295
- 95 Kales A, Soldatos CR, Kales JD. Taking a sleep history. Am Fam Physician 1980; 22 (02) 101-107
- 96 Ruff RMIGL, Iverson GL, Barth JT, Bush SS, Broshek DK, Policy NAN. NAN Policy and Planning Committee. Recommendations for diagnosing a mild traumatic brain injury: a National Academy of Neuropsychology education paper. Arch Clin Neuropsychol 2009; 24 (01) 3-10
- 97 Thompson HJVMS, Vavilala MS, Rivara FP. Chapter 1 common data elements and federal interagency traumatic brain injury research informatics system for TBI research. Annu Rev Nurs Res 2015; 33 (01) 1-11
- 98 Wickwire EM, Albrecht JS, Capaldi II VF. et al; Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Investigators. Trajectories of insomnia in adults after traumatic brain injury. JAMA Netw Open 2022; 5 (01) e2145310
- 99 Yue JKVMJ, Vassar MJ, Lingsma HF. et al; TRACK-TBI Investigators. Transforming research and clinical knowledge in traumatic brain injury pilot: multicenter implementation of the common data elements for traumatic brain injury. J Neurotrauma 2013; 30 (22) 1831-1844
- 100 King NSCS, Crawford S, Wenden FJ, Moss NE, Wade DT. The Rivermead post concussion symptoms questionnaire: a measure of symptoms commonly experienced after head injury and its reliability. J Neurol 1995; 242 (09) 587-592
- 101 Tulsky DSKPA, Kisala PA, Victorson D. et al. TBI-QOL: development and calibration of item banks to measure patient reported outcomes following traumatic brain injury. J Head Trauma Rehabil 2016; 31 (01) 40-51
- 102 Maré IA, Kramer B, Hazelhurst S. et al. Electronic data capture system (REDCap) for health care research and training in a resource-constrained environment: technology adoption case study. JMIR Med Inform 2022; 10 (08) e33402
- 103 Ouellet MCMCM, Morin CM. Subjective and objective measures of insomnia in the context of traumatic brain injury: a preliminary study. Sleep Med 2006; 7 (06) 486-497
- 104 Mollayeva T, Kendzerska T, Colantonio A. Self-report instruments for assessing sleep dysfunction in an adult traumatic brain injury population: a systematic review. Sleep Med Rev 2013; 17 (06) 411-423
- 105 Fictenberg NLPSH, Putnam SH, Mann NR, Zafonte RD, Millard AE. Insomnia screening in postacute traumatic brain injury: utility and validity of the Pittsburgh sleep quality index. Am J Phys Med Rehabil 2001; 80 (05) 339-345
- 106 Donahue CC, Resch JE. Concussion and the sleeping brain. Sports Med Open 2024; 10 (01) 68
- 107 Lequerica AH, Botticello AL, Lengenfelder J. et al. Factors associated with remission of post-traumatic brain injury fatigue in the years following traumatic brain injury (TBI): a TBI model systems module study. Neuropsychol Rehabil 2017; 27 (07) 1019-1030
- 108 Chiu PY, Chuang LP. Diagnostic accuracy of the Berlin questionnaire, STOP-BANG, STOP, and Epworth sleepiness scale in detecting obstructive sleep apnea: a bivariate meta-analysis. Sleep Med Rev 2016
- 109 Nakase-Richardson R, Schwartz DJ, Drasher-Phillips L. et al. Comparative effectiveness of sleep apnea screening instruments during inpatient rehabilitation following moderate to severe TBI. Arch Phys Med Rehabil 2020; 101 (02) 283-296
- 110 Toccalino D, Wiseman-Hakes C, Zalai DM. Preliminary validation of the sleep and concussion questionnaire as an outcome measure for sleep following brain injury. Brain Inj 2021; 35 (07) 743-750
- 111 Cruse N, Sabo H, Brunner M. Social support after TBI: an investigation of Facebook posts in open access support groups. Neuropsychol Rehabil 2024; 1-23
- 112 Patel P, Kim JY, Brooks LJ. Accuracy of a smartphone application in estimating sleep in children. Sleep Breath 2017; 21 (02) 505-511
- 113 Bhat S, Ferraris A, Gupta D. et al. Is there a clinical role for smartphone sleep apps? Comparison of sleep cycle detection by a smartphone application to polysomnography. J Clin Sleep Med 2015; 11 (07) 709-715
- 114 Toon E, Davey MJ, Hollis SL, Nixon GM, Horne RSC, Biggs SN. Comparison of commercial wrist-based and smartphone accelerometers, actigraphy, and PSG in a clinical cohort of children and adolescents. J Clin Sleep Med 2016; 12 (03) 343-350
- 115 Behar J, Roebuck A, Domingos JS, Gederi E, Clifford GD. A review of current sleep screening applications for smartphones. Physiol Meas 2013; 34 (07) R29-R46
- 116 Fietze I. Sleep applications to assess sleep quality. Sleep Med Clin 2016; 11 (04) 461-468
- 117 Chiang AA, Khosla S. Consumer wearable sleep trackers: are they ready for clinical use?. Sleep Med Clin 2023; 18 (03) 311-330
- 118 Lee T, Cho Y, Cha KS. et al. Accuracy of 11 wearable, nearable, and airable consumer sleep trackers: prospective multicenter validation study. JMIR Mhealth Uhealth 2023; 11: e50983
- 119 Ziegler A, Eliasziw M, Howard VJ. et al. New requirements in the reporting of randomized controlled trials published in neurology to foster greater transparency. Neurology 2024; 103 (07) e209909
- 120 Cui Q, Tosun D, Mukherjee P, Abbasi-Asl R. 7T MRI synthesization from 3T acquisitions. arXiv. Accessed July 8, 2024 at: https://arxiv.org/abs/2403.08979
- 121 Reducing publication bias with registered reports. Nat Neurosci 2024; 27 (09) 1635-1635
- 122 Binder S, Berg K, Gasca F. et al. Transcranial slow oscillation stimulation during sleep enhances memory consolidation in rats. Brain Stimul 2014; 7 (04) 508-515
- 123 Landsness EC, Crupi D, Hulse BK. et al. Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep 2009; 32 (10) 1273-1284
- 124 Dasdelen MF, Er S, Kaplan B. et al. A novel theanine complex, Mg-L-theanine improves sleep quality via regulating brain electrochemical activity. Front Nutr 2022; 9: 874254
- 125 Foldvary-Schaefer N, De Leon Sanchez I, Karafa M, Mascha E, Dinner D, Morris HH. Gabapentin increases slow-wave sleep in normal adults. Epilepsia 2002; 43 (12) 1493-1497
- 126 Spano GM, Cavelli M, Marshall W, Tononi G, Cirelli C. Increase in NREM sleep slow waves following injections of sodium oxybate in the mouse cerebral cortex and the role of somatostatin-positive interneurons. Eur J Neurosci 2024; 59 (04) 502-525
- 127 Levin HS, Diaz-Arrastia RR. Diagnosis, prognosis, and clinical management of mild traumatic brain injury. Lancet Neurol 2015; 14 (05) 506-517
- 128 Irish LA, Kline CE, Gunn HE, Buysse DJ, Hall MH. The role of sleep hygiene in promoting public health: a review of empirical evidence. Sleep Med Rev 2015; 22: 23-36
- 129 Ayalon L, Borodkin K, Dishon L, Kanety H, Dagan Y. Circadian rhythm sleep disorders following mild traumatic brain injury. Neurology 2007; 68 (14) 1136-1140
- 130 Mitchell MD, Gehrman P, Perlis M, Umscheid CA. Comparative effectiveness of cognitive behavioral therapy for insomnia: a systematic review. BMC Fam Pract 2012; 13 (01) 40
- 131 Malarkey ME, Fu AJ, Mannan N. et al. Internet-guided cognitive behavioral therapy for insomnia among patients with traumatic brain injury: a randomized clinical trial. JAMA Netw Open 2024; 7 (07) e2420090
- 132 Kang SG, Kang JM, Cho SJ. et al. Cognitive behavioral therapy using a mobile application synchronizable with wearable devices for insomnia treatment: a pilot study. J Clin Sleep Med 2017; 13 (04) 633-640
- 133 Zachariae R, Lyby MS, Ritterband LM, O'Toole MS. Efficacy of internet-delivered cognitive-behavioral therapy for insomnia - a systematic review and meta-analysis of randomized controlled trials. Sleep Med Rev 2016; 30: 1-10
- 134 Ho FYY, Chung KF, Yeung WF. et al. Self-help cognitive-behavioral therapy for insomnia: a meta-analysis of randomized controlled trials. Sleep Med Rev 2015; 19: 17-28
- 135 Kay-Stacey M, Attarian H. Advances in the management of chronic insomnia. BMJ 2016; 354: i2123
- 136 Gunja N. In the Zzz zone: the effects of Z-drugs on human performance and driving. J Med Toxicol 2013; 9 (02) 163-171
- 137 Sivertsen B, Omvik S, Pallesen S. et al. Cognitive behavioral therapy vs zopiclone for treatment of chronic primary insomnia in older adults: a randomized controlled trial. JAMA 2006; 295 (24) 2851-2858
- 138 Krystal AD, Erman M, Zammit GK, Soubrane C, Roth T. ZOLONG Study Group. Long-term efficacy and safety of zolpidem extended-release 12.5 mg, administered 3 to 7 nights per week for 24 weeks, in patients with chronic primary insomnia: a 6-month, randomized, double-blind, placebo-controlled, parallel-group, multicenter study. Sleep 2008; 31 (01) 79-90
- 139 Roth T, Soubrane C, Titeux L, Walsh JK. Zoladult Study Group. Efficacy and safety of zolpidem-MR: a double-blind, placebo-controlled study in adults with primary insomnia. Sleep Med 2006; 7 (05) 397-406
- 140 Arbon EL, Knurowska M, Dijk DJ. Randomised clinical trial of the effects of prolonged-release melatonin, temazepam and zolpidem on slow-wave activity during sleep in healthy people. J Psychopharmacol 2015; 29 (07) 764-776
- 141 Walsh JK, Vogel GW, Scharf M. et al; William Erwin C. A five week, polysomnographic assessment of zaleplon 10 mg for the treatment of primary insomnia. Sleep Med 2000; 1 (01) 41-49
- 142 Hambrecht-Wiedbusch VS, Gauthier EA, Baghdoyan HA, Lydic R. Benzodiazepine receptor agonists cause drug-specific and state-specific alterations in EEG power and acetylcholine release in rat pontine reticular formation. Sleep 2010; 33 (07) 909-918
- 143 Chinoy ED, Frey DJ, Kaslovsky DN, Meyer FG, Wright Jr KP. Age-related changes in slow wave activity rise time and NREM sleep EEG with and without zolpidem in healthy young and older adults. Sleep Med 2014; 15 (09) 1037-1045
- 144 Thompson W, Quay TAW, Rojas-Fernandez C, Farrell B, Bjerre LM. Atypical antipsychotics for insomnia: a systematic review. Sleep Med 2016; 22: 13-17
- 145 Vande Griend JP, Anderson SL. Histamine-1 receptor antagonism for treatment of insomnia. J Am Pharm Assoc (Wash DC) 2012; 52 (06) e210-e219
- 146 Schroeck JL, Ford J, Conway EL. et al. Review of safety and efficacy of sleep medicines in older adults. Clin Ther 2016; 38 (11) 2340-2372
- 147 Bertisch SM, Herzig SJ, Winkelman JW, Buettner C. National use of prescription medications for insomnia: NHANES 1999-2010. Sleep 2014; 37 (02) 343-349
- 148 Krystal AD, Lankford A, Heith Durrence H. et al. Efficacy and safety of doxepin 3 and 6 mg in a 35-day sleep laboratory trial in adults with chronic primary insomnia. Sleep (Basel) 2011; 34 (10) 1433-1442
- 149 Lankford A, Rogowski R, Essink B, Ludington E, Heith Durrence H, Roth T. Efficacy and safety of doxepin 6 mg in a four-week outpatient trial of elderly adults with chronic primary insomnia. Sleep Med 2012; 13 (02) 133-138
- 150 Yeung WF, Chung KF, Yung KP, Ng THY. Doxepin for insomnia: a systematic review of randomized placebo-controlled trials. Sleep Med Rev 2015; 19: 75-83
- 151 Dubey AK, Handu SS, Mediratta PK. Suvorexant: the first orexin receptor antagonist to treat insomnia. J Pharmacol Pharmacother 2015; 6 (02) 118-121
- 152 Herring WJ, Snyder E, Budd K. et al. Orexin receptor antagonism for treatment of insomnia: a randomized clinical trial of suvorexant. Neurology 2012; 79 (23) 2265-2274
- 153 Michelson D, Snyder E, Paradis E. et al. Safety and efficacy of suvorexant during 1-year treatment of insomnia with subsequent abrupt treatment discontinuation: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet Neurol 2014; 13 (05) 461-471
- 154 Kishi T, Nomura I, Matsuda Y. et al. Lemborexant vs suvorexant for insomnia: a systematic review and network meta-analysis. J Psychiatr Res 2020; 128: 68-74
- 155 McElroy H, O'Leary B, Adena M, Campbell R, Monfared AAT, Meier G. Comparative efficacy of lemborexant and other insomnia treatments: a network meta-analysis. J Manag Care Spec Pharm 2021; 27 (09) 1296-1308
- 156 Kishi T, Matsunaga S, Iwata N. Suvorexant for primary insomnia: a systematic review and meta-analysis of randomized placebo-controlled trials. PLOS ONE 2015; 10 (08) e0136910
- 157 Richey SM, Krystal AD. Pharmacological advances in the treatment of insomnia. Curr Pharm Des 2011; 17 (15) 1471-1475
- 158 Rivara S, Mor M, Bedini A, Spadoni G, Tarzia G. Melatonin receptor agonists: SAR and applications to the treatment of sleep-wake disorders. Curr Top Med Chem 2008; 8 (11) 954-968
- 159 University of Colorado. Denver. Cannabinoids and Traumatic Brain Injury: A Randomized, Placebo Controlled Trial. clinicaltrials.gov; 2024. Accessed February 14, 2025 at: https://clinicaltrials.gov/study/NCT05632627
- 160 D'Angelo M, Steardo Jr L. Cannabinoids and sleep: exploring biological mechanisms and therapeutic potentials. Int J Mol Sci 2024; 25 (07) 3603
- 161 Guilleminault C, Yuen KM, Gulevich MG, Karadeniz D, Leger D, Philip P. Hypersomnia after head-neck trauma: a medicolegal dilemma. Neurology 2000; 54 (03) 653-659
- 162 Menn SJ, Yang R, Lankford A. Armodafinil for the treatment of excessive sleepiness associated with mild or moderate closed traumatic brain injury: a 12-week, randomized, double-blind study followed by a 12-month open-label extension. J Clin Sleep Med 2014; 10 (11) 1181-1191
- 163 Kaiser PR, Valko PO, Werth E. et al. Modafinil ameliorates excessive daytime sleepiness after traumatic brain injury. Neurology 2010; 75 (20) 1780-1785
- 164 Jha A, Weintraub A, Allshouse A. et al. A randomized trial of modafinil for the treatment of fatigue and excessive daytime sleepiness in individuals with chronic traumatic brain injury. J Head Trauma Rehabil 2008; 23 (01) 52-63
- 165 Wisor J. Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions. Front Neurol 2013; 4: 139
- 166 Okunola-Bakare OM, Cao J, Kopajtic T. et al. Elucidation of structural elements for selectivity across monoamine transporters: novel 2-[(diphenylmethyl)sulfinyl]acetamide (modafinil) analogues. J Med Chem 2014; 57 (03) 1000-1013
- 167 Seeman P, Guan HC, Hirbec H. Dopamine D2High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil. Synapse 2009; 63 (08) 698-704
- 168 O'Phelan K, Ernst T, Park D. et al. Impact of methamphetamine on regional metabolism and cerebral blood flow after traumatic brain injury. Neurocrit Care 2013; 19 (02) 183-191
- 169 Rau TF, Kothiwal AS, Rova AR. et al. Administration of low dose methamphetamine 12 h after a severe traumatic brain injury prevents neurological dysfunction and cognitive impairment in rats. Exp Neurol 2014; 253: 31-40
- 170 Maksimowski MB, Tampi RR. Efficacy of stimulants for psychiatric symptoms in individuals with traumatic brain injury. Ann Clin Psychiatry 2016; 28 (03) 156-166
- 171 Johansson B, Wentzel AP, Andréll P, Mannheimer C, Rönnbäck L. Methylphenidate reduces mental fatigue and improves processing speed in persons suffered a traumatic brain injury. Brain Inj 2015; 29 (06) 758-765
- 172 Osier ND, Dixon CE. Catecholaminergic based therapies for functional recovery after TBI. Brain Res 2016; 1640 (Pt A): 15-35
- 173 Forsyth RJ, Jayamoni B, Paine TC. Monoaminergic agonists for acute traumatic brain injury. Cochrane Database Syst Rev 2006; 18 (04) CD003984
- 174 Brody DL. Concussion Care Manual: A Practical Guide. Oxford, UK: Oxford University Press; 2014
- 175 Karsten J, Hagenauw LA, Kamphuis J, Lancel M. Low doses of mirtazapine or quetiapine for transient insomnia: a randomised, double-blind, cross-over, placebo-controlled trial. J Psychopharmacol 2017; 31 (03) 327-337
- 176 Zhang Z, Ferretti V, Güntan İ. et al. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat Neurosci 2015; 18 (04) 553-561
- 177 Naguy A. Clonidine use in psychiatry: panacea or panache. Pharmacology 2016; 98 (1–2): 87-92
- 178 Landvater J, Kim S, Caswell K. et al. Traumatic brain injury and sleep in military and veteran populations: a literature review. NeuroRehabilitation 2024; 55 (03) 245-270
- 179 Riemann D, Nissen C, Palagini L, Otte A, Perlis ML, Spiegelhalder K. The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol 2015; 14 (05) 547-558
- 180 Steele DL, Rajaratnam SMW, Redman JR, Ponsford JL. The effect of traumatic brain injury on the timing of sleep. Chronobiol Int 2005; 22 (01) 89-105
- 181 Chaumet G, Quera-Salva MA, Macleod A. et al. Is there a link between alertness and fatigue in patients with traumatic brain injury?. Neurology 2008; 71 (20) 1609-1613
- 182 Masel BE, Scheibel RS, Kimbark T, Kuna ST. Excessive daytime sleepiness in adults with brain injuries. Arch Phys Med Rehabil 2001; 82 (11) 1526-1532
- 183 Buysse DJ, Reynolds III CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res 1989; 28 (02) 193-213
- 184 Bastien CH, Vallières A, Morin CM. Validation of the insomnia severity index as an outcome measure for insomnia research. Sleep Med 2001; 2 (04) 297-307
- 185 Williams BR, Lazic SE, Ogilvie RD. Polysomnographic and quantitative EEG analysis of subjects with long-term insomnia complaints associated with mild traumatic brain injury. Clin Neurophysiol 2008; 119 (02) 429-438
- 186 Ouellet MC, Morin CM. Efficacy of cognitive-behavioral therapy for insomnia associated with traumatic brain injury: a single-case experimental design. Arch Phys Med Rehabil 2007; 88 (12) 1581-1592
- 187 Sarkanen T, Alakuijala A, Partinen M. Ullanlinna Narcolepsy Scale in diagnosis of narcolepsy. Sleep 2019; 42 (03) zsy238