Subscribe to RSS
DOI: 10.1055/a-2624-6281
Effects of body weight-supported treadmill training with or without electrical stimulation on functional ambulation in patients with spinal cord injury: A systematic review and meta-analysis
Einfluss eines körpergewichtsgestützten Laufbandtrainings mit oder ohne Elektrostimulation auf die Gehfähigkeit bei Patienten mit Rückenmarksverletzungen: Systematisches Review und Metaanalyse
Abstract
Background
Earlier studies on body-weight supported treadmill training (BWSTT) for spinal cord injury (SCI) show potential benefits, particularly in improving locomotor function. However, most evidence comes from small studies, necessitating a systematic review to assess its overall impact and acceptability. This review aims to investigate and quantitatively synthesize evidence on the impact of BWSTT, with or without electrical stimulation (FES/ES), on ambulation in individuals with incomplete spinal cord injuries (iSCI) compared to overground gait training or traditional physiotherapy.
Methods
A bibliographic extensive search for clinical trials involving adults with traumatic spinal cord injury (TSCI) lesions (AISA impairment scale of B, C or D) that compared BWSTT with or without electrical stimulation with overground gait training or traditional physiotherapy was conducted. The end results were walking functionality (walking speed and capacity) and functional independence. BWSTT with FES/ES was analyzed independently, and trial-by-trial data were combined to calculate the mean across group differences via a model with random/fixed effects.
Results
Twelve randomized controlled trials (RCTs) were included for qualitative synthesis, whereas nine studies were analyzed for quantitative data. BWSTT as locomotor approach for individual with incomplete SCI did not significantly improve walking speed (MD: − 0.02, 95% CI, − 0.09 to 0.06, p=0.45), nor did it improve walking capacity (MD: 16.28, 95% CI, -26.27 to 58.82, p=0.05), FIM score, WISCI, LEMS, and balance. Similarly, BWSTT combined FES/ES and the control group showed no statistically significant differences in walking speed or capacity.
Conclusion
BWSTT, whether used alone or in combination with FES/ES, does not provide a statistically significant advantage over other forms of physical rehabilitation for improving walking function, speed, capacity, balance, or functional independence in people with iSCI.
Zusammenfassung
Hintergrund und Ziel
In frühere Studien zum körpergewichtsgestützten Laufbandtraining (body-weight supported treadmill training, BWSTT) bei Rückenmarksverletzungen konnten mögliche Vorteile insbesondere in Hinblick auf eine Verbesserung der Gehfähigkeit aufgezeigt werden. Da allerdings ein Großteil der Evidence aus kleinen Studien stammt, ist ein systematisches Review zur Beurteilung der Gesamtwirkung und Akzeptanz von BWSTT erforderlich. Ziel der vorliegenden Übersichtsarbeit ist es, die Evidence zum Einfluss von BWSTT mit oder ohne Elektrostimulation (funktionelle ES [FES] oder ES) auf die Gehfähigkeit bei Personen mit inkompletten Rückenmarksverletzungen im Vergleich zum „Overground“-Gangtraining oder herkömmlicher Physiotherapie zu untersuchen und quantitativ zusammenzufassen.
Methode
Es erfolgte eine eingehende Literaturrecherche nach klinischen Studien mit Erwachsenen mit traumatischen Rückenmarksverletzungen (AISA Impairment Scale B, C oder D), in denen BWSTT mit oder ohne Elektrostimulation und „Overground“-Gangtraining oder herkömmlicher Physiotherapie verglichen wurden. Die untersuchten Outcomes waren Gehfunktion (Gehgeschwindigkeit und -kapazität) und funktionelle Unabhängigkeit. BWSTT mit FES/ES wurde unabhängig analysiert und die Daten der einzelnen Studien wurden zur Berechnung der mittleren Unterschiede zwischen den Gruppen mittels eines Random-Effects-/Fixed-Effects-Modells zusammengefasst.
Ergebnisse
Es wurden zwölf randomisierte kontrollierte Studien (RCTs) für die qualitative Synthese und neun Studien für die quantitative Datenanalyse einbezogen. BWSTT als ein Ansatz zur Verbesserung der Gehfähigkeit von Personen mit inkompletten Rückenmarksverletzung konnte weder die Gehgeschwindigkeit signifikant steigern (MD: − 0,02, 95-%-KI: − 0,09–0,06; p=0,45) noch eine Verbesserung von Gehkapazität (MD: 16,28, 95-%-KI: − 26,27–58,82; p=0,05), FIM-Score, WISCI, LEMS und Gleichgewicht herbeiführen. Ebenso fand sich für BWSTT mit oder ohne Elektrostimulation und die Kontrollgruppe kein signifikanter Unterschied hinsichtlich Gehgeschwindigkeit und Gehkapazität.
Schlussfolgerung
BWSTT bietet bei Personen mit inkompletten Rückenmarksverletzungen weder allein noch kombiniert mit FES/ES einen statistisch signifikanten Vorteil gegenüber anderen Formen der physikalischen Rehabilitation zur Verbesserung der Gehfunktion, Gehgeschwindigkeit, Gehkapazität, des Gleichgewichts oder der funktionellen Unabhängigkeit.
Keywords
spinal cord injury (SCI) - rehabilitation - locomotor training - electrical stimulation - body weight supported treadmill training - systematic reviewSchlüsselwörter
Rückenmarksverletzung - Rehabilitation - Bewegungstraining - Elektrostimulation - körpergewichtsgestütztes Laufbandtraining - systematische ÜbersichtPublication History
Received: 03 January 2025
Accepted after revision: 30 May 2025
Article published online:
13 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Bennett J, Emmady P. Spinal cord injuries. Spinal Cord Injuries In StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2021
- 2 Arroyo-Fernández R, Menchero-Sánchez R, Pozuelo-Carrascosa DP. et al. Effectiveness of Body Weight-Supported Gait Training on Gait and Balance for Motor-Incomplete Spinal Cord Injuries: A Systematic Review with Meta-Analysis. Journal of Clinical Medicine 2024; 13: 1105
- 3 Rahimi-Movaghar V, Sayyah MK, Akbari H. et al. Epidemiology of traumatic spinal cord injury in developing countries: a systematic review. Neuroepidemiology 2013; 41: 65-85
- 4 Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil 2013; 94: 2297-2308
- 5 Field-Fote EC, Yang JF, Basso DM. et al. Supraspinal Control Predicts Locomotor Function and Forecasts Responsiveness to Training after Spinal Cord Injury. Journal of Neurotrauma 2017; 34: 1813-1825
- 6 Shin JC, Kim DH, Yu SJ. et al. Epidemiologic change of patients with spinal cord injury. Ann Rehabil Med 2013; 37: 50-56
- 7 National Spinal Cord Injury Statistical Center. Spinal cord injury facts and figures at a glance. J Spinal Cord Med 2012; 35: 197-198
- 8 Bökel A, Geng V, Ostermann A. et al. Challenges of Occupational Participation of Persons with SCI – Analyses of Causes and Development of Solution Strategies in the Context of a Focus Group Discussion. Phys Med Rehab Kuror 2024; 34: 138-148
- 9 Sharma P, Naglah A, Aslan S. et al. Preservation of functional descending input to paralyzed upper extremity muscles in motor complete cervical spinal cord injury. Clin Neurophysiol 2023; 150: 56-68
- 10 Dimitrijevic MR, Dimitrijevic MM, Faganel J. et al. Suprasegmentally induced motor unit activity in paralyzed muscles of patients with established spinal cord injury. Ann Neurol 1984; 16: 216-221
- 11 Quinzaños J, Villa AR, Flores AA. et al. Proposal and validation of a clinical trunk control test in individuals with spinal cord injury. Spinal Cord 2014; 52: 449-454
- 12 van Middendorp JJ, Hosman AJ, Donders AR. et al. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study. Lancet 2011; 377: 1004-1010
- 13 Pascual-Leone A, Freitas C, Oberman L. et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr 2011; 24: 302-315
- 14 World Health Organization. International Classification of Functioning, Disability and Health (ICF). 2012 [Available from: https://www.who.int/classifications/international-classification-of-functioning-disability-and-health
- 15 Barbeau H, Ladouceur M, Mirbagheri MM. et al. The effect of locomotor training combined with functional electrical stimulation in chronic spinal cord injured subjects: walking and reflex studies. Brain Res Brain Res Rev 2002; 40: 274-291
- 16 Behrman AL, Ardolino EM, Harkema SJ. Activity-Based Therapy: From Basic Science to Clinical Application for Recovery After Spinal Cord Injury. J Neurol Phys Ther 2017; 41 (Suppl 3 IV STEP Spec Iss) S39-s45
- 17 Barbeau H, Fung J. The role of rehabilitation in the recovery of walking in the neurological population. Curr Opin Neurol 2001; 14: 735-740
- 18 Behrman AL, Bowden MG, Nair PM. Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery. Phys Ther 2006; 86: 1406-1425
- 19 Mehrholz J, Harvey LA, Thomas S. et al. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord 2017; 55: 722-729
- 20 Mehrholz J, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Cochrane Database Syst Rev 2012; 11: Cd006676
- 21 Behrman AL, Harkema SJ. Locomotor training after human spinal cord injury: a series of case studies. Phys Ther 2000; 80: 688-700
- 22 Aguirre-Güemez AV, Pérez-Sanpablo AI, Quinzaños-Fresnedo J. et al. Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete Spinal Cord Injury: A Systematic Review with meta-analysis. The Journal of Spinal Cord Medicine 2019; 42: 142-154
- 23 Wirz M, Zemon DH, Rupp R. et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial. Archives of Physical Medicine and Rehabilitation 2005; 86: 672-680
- 24 Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther 2005; 85: 52-66
- 25 Wang J, Zhao L, Gao Y. et al. The difference between the effectiveness of body-weight-supported treadmill training combined with functional electrical stimulation and sole body-weight-supported treadmill training for improving gait parameters in stroke patients: A systematic review and meta-analysis. Front Neurol 2022; 13: 1003723
- 26 Holanda LJ, Silva PMM, Amorim TC. et al. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review. J Neuroeng Rehabil 2017; 14: 126
- 27 Fang C-Y, Tsai J-L, Li G-S. et al. Effects of Robot-Assisted Gait Training in Individuals with Spinal Cord Injury: A Meta-analysis. BioMed Research International 2020; 2102785
- 28 Duan R, Qu M, Yuan Y. et al. Clinical Benefit of Rehabilitation Training in Spinal Cord Injury: A Systematic Review and Meta-Analysis. Spine 2021; 46: E398-E410
- 29 Huang L, Huang HL, Dang XW. et al. Effect of Body Weight Support Training on Lower Extremity Motor Function in Patients With Spinal Cord Injury: A Systematic Review and Meta-analysis. American Journal of Physical Medicine & Rehabilitation 2024; 103: 149-157
- 30 Bin L, Wang X, Jiatong H. et al. The effect of robot-assisted gait training for patients with spinal cord injury: a systematic review and meta-analysis. Frontiers in Neuroscience 2023; 17
- 31 Hannold EM, Young ME, Rittman MR. et al. Locomotor training: experiencing the changing body. J Rehabil Res Dev 2006; 43: 905-916
- 32 Black RE, Victora CG, Walker SP. et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. The lancet 2013; 382: 427-451
- 33 Lam T, Eng JJ, Wolfe DL. et al. A systematic review of the efficacy of gait rehabilitation strategies for spinal cord injury. Top Spinal Cord Inj Rehabil 2007; 13: 32-57
- 34 Swinnen E, Duerinck S, Baeyens JP. et al. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med 2010; 42: 520-526
- 35 Wessels M, Lucas C, Eriks I. et al. Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: a systematic review. J Rehabil Med 2010; 42: 513-519
- 36 Tefertiller C, Pharo B, Evans N. et al. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev 2011; 48: 387-416
- 37 Alcobendas-Maestro M, Esclarín-Ruz A, Casado-López RM. et al. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial. Neurorehabil Neural Repair 2012; 26: 1058-1063
- 38 Wolpaw JR. Treadmill training after spinal cord injury: good but not better. Neurology 2006; 66: 466-467
- 39 Harvey LA, Glinsky JV, Bowden JL. The effectiveness of 22 commonly administered physiotherapy interventions for people with spinal cord injury: a systematic review. Spinal Cord 2016; 54: 914-923
- 40 Dobkin BH, Duncan PW. Should Body Weight–Supported Treadmill Training and Robotic-Assistive Steppers for Locomotor Training Trot Back to the Starting Gate. Neurorehabilitation and Neural Repair 2012; 26: 308-317
- 41 Page MJ, McKenzie JE, Bossuyt PM. et al. Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epidemiol 2021; 134: 103-112
- 42 Evans D. Hierarchy of evidence: a framework for ranking evidence evaluating healthcare interventions. J Clin Nurs 2003; 12: 77-84
- 43 Chandler J, Cumpston M, Li T. et al. Cochrane handbook for systematic reviews of interventions. Hoboken: Wiley; 2019
- 44 National Campaign to Prevent Teen P.. Weinberger DR, Elvevåg B, Giedd J. The adolescent brain: a work in progress. Washington, DC.: National Campaign to Prevent Teen Pregnancy; 2005
- 45 Dobkin B, Apple D, Barbeau H. et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology 2006; 66: 484-493
- 46 Hamilton BB, Laughlin JA, Fiedler RC. et al. Interrater reliability of the 7-level functional independence measure (FIM). Scand J Rehabil Med 1994; 26: 115-119
- 47 Database PE. PEDro scale 1999 [Available from: http://www.pedro.org.au/english/downloads/pedroscale/
- 48 Wan X, Wang W, Liu J. et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC medical research methodology 2014; 14: 1-13.
- 49 Metaanalysisonline; Available from https://metaanalysisonline.com/
- 50 Dobkin B, Barbeau H, Deforge D. et al. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabil Neural Repair 2007; 21: 25-35
- 51 Field-Fote EC, Lindley SD, Sherman AL. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes. J Neurol Phys Ther 2005; 29: 127-137
- 52 Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther 2011; 91: 48-60
- 53 Senthilvelkumar T, Magimairaj H, Fletcher J. et al. Comparison of body weight-supported treadmill training versus body weight-supported overground training in people with incomplete tetraplegia: a pilot randomized trial. Clin Rehabil 2015; 29: 42-49
- 54 Piira A, Lannem AM, Sørensen M. et al. Manually assisted body-weight supported locomotor training does not re-establish walking in non-walking subjects with chronic incomplete spinal cord injury: A randomized clinical trial. J Rehabil Med 2019; 51: 113-119
- 55 Alexeeva N, Sames C, Jacobs PL. et al. Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial. J Spinal Cord Med 2011; 34: 362-379
- 56 Kapadia N, Masani K, Catharine Craven B. et al. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency. J Spinal Cord Med 2014; 37: 511-524
- 57 Postans NJ, Hasler JP, Granat MH. et al. Functional electric stimulation to augment partial weight-bearing supported treadmill training for patients with acute incomplete spinal cord injury: A pilot study. Arch Phys Med Rehabil 2004; 85: 604-610
- 58 Yang JF, Musselman KE, Livingstone D. et al. Repetitive mass practice or focused precise practice for retraining walking after incomplete spinal cord injury? A pilot randomized clinical trial. Neurorehabil Neural Repair 2014; 28: 314-324
- 59 Nooijen CF, Ter Hoeve N, Field-Fote EC. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil 2009; 6: 36
- 60 Lucareli PR, Lima MO, Lima FP. et al. Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study. Spinal Cord 2011; 49: 1001-1007
- 61 Freivogel S, Schmalohr D, Mehrholz J. Improved walking ability and reduced therapeutic stress with an electromechanical gait device. J Rehabil Med 2009; 41: 734-739