Subscribe to RSS
DOI: 10.1055/a-2625-3872
Häufige und seltene Ursachen von Kleinwuchs: Bedeutung der genetischen Diagnostik
Genetic causes of short stature – common and rare diagnoses: the importance of genetic diagnostics and practical guidance for clinical applicationAuthors

Zusammenfassung
Kleinwuchs kann eine Vielzahl von Ursachen haben, die von allgemeinen Wachstumsstörungen bis hin zu seltenen genetischen Syndromen reichen. In diesem Artikel werden die wichtigsten genetischen Ursachen von Kleinwuchs untersucht, einschließlich Chromosomenveränderungen, Einzelgenveränderungen und Methylierungsstörungen. Ein besonderer Fokus liegt auf der Rolle der genetischen Diagnostik, die eine präzise Ursachenklärung ermöglicht und so zu individuelleren Therapieansätzen beiträgt. Der Artikel erläutert die gängigen diagnostischen Verfahren, die zur Abklärung von Kleinwuchs eingesetzt werden, und gibt praktische Hinweise zur Veranlassung der entsprechenden Tests in der klinischen Praxis. Häufig bleibt Kleinwuchs aufgrund unklarer Diagnosen als „familiärer Kleinwuchs“ unerkannt oder wird nicht ausreichend behandelt. Durch den gezielten Einsatz genetischer Tests können spezifische Behandlungen wie Wachstumshormontherapien oder andere medikamentöse Interventionen sinnvoll eingeleitet werden. Ziel des Artikels ist es, die Bedeutung der genetischen Diagnostik in der Kleinwuchsabklärung zu verdeutlichen und praktische Empfehlungen für die Umsetzung der Diagnostik in der täglichen Patientenversorgung zu bieten.
Abstract
Short stature can have a variety of causes, ranging from general growth disorders to rare genetic syndromes. This article explores the most important genetic causes of short stature, including chromosomal variations, single-gene variations, and methylation changes. A particular focus is placed on the role of genetic diagnostics, which allows for precise identification of the underlying cause and thus contributes to more personalized therapeutic approaches. The article explains the common diagnostic procedures used to investigate short stature and provides practical guidance on when and how to request the relevant tests in clinical practice. Often, short stature is misdiagnosed as “familial short stature” or goes untreated due to unclear diagnoses. Through targeted genetic testing, specific treatments such as growth hormone therapy or other medical interventions can be appropriately initiated. The aim of this article is to emphasize the importance of genetic diagnostics in the evaluation of short stature and offer practical recommendations for integrating diagnostic testing into routine patient care.
Schlüsselwörter
Kleinwuchs - genetische Diagnostik - Chromosomenaberrationen - Einzelgenveränderungen - TherapieempfehlungenKeywords
short stature - genetic diagnostics - chromosomal aberrations - single-gene mutations - treatment recommendationsPublication History
Article published online:
07 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Wit JM, Camacho-Hübner C. Endocrine regulation of longitudinal bone growth. Endocr Dev 2011; 21: 30-41
- 2 Lui JC. Regulation of body growth by microRNAs. Mol Cell Endocrinol 2017; 456: 2-8
- 3 van Duyvenvoorde HA, Lui JC, Kant SG. et al. Copy number variants in patients with short stature. Eur J Hum Genet 2014; 22: 602-609
- 4 Gargano MA, Matentzoglu N, Coleman B. et al. The Human Phenotype Ontology in 2024: phenotypes around the world. Nucleic Acids Res 2024; 52 D1333–D1346
- 5 Arroyo-Ruiz R, Urbano-Ruiz C, García-Berrocal MB. et al. Clinical and genetic characterization of a cohort of small-for-gestational-age patients: cost-effectiveness of whole-exome sequencing and effectiveness of treatment with GH. J Clin Med 2024; 13: 4006 10.3390/jcm13144006
- 6 Tüysüz B, Kasap B, Uludağ Alkaya D. et al. Investigation of (epi)genetic causes in syndromic short children born small for gestational age. Eur J Med Genet 2023; 66: 104854
- 7 S2k-Leitlinie Humangenetische Diagnostik und Genetische Beratung. Medizinische Genetik 2019; 30: 469-522
- 8 Duckett K, Williamson A, Kincaid JWR. et al. Prevalence of deleterious variants in MC3R in patients with constitutional delay of growth and puberty. J Clin Endocrinol Metab 2023; 108 e1580–e1587
- 9 Howard SR, Dunkel L. Delayed puberty – phenotypic diversity, molecular genetic mechanisms, and recent discoveries. Endocr Rev 2019; 40: 1285-1317
- 10 Abitbol L, Zborovski S, Palmert MR. Evaluation of delayed puberty: what diagnostic tests should be performed in the seemingly otherwise well adolescent?. Arch Dis Child 2016; 101: 767-771
- 11 LaFranchi S, Hanna CE, Mandel SH. Constitutional delay of growth: expected versus final adult height. Pediatrics 1991; 87: 82-87
- 12 Lee PA, Chernausek SD, Hokken-Koelega ACS. et al. International Small for Gestational Age Advisory Board Consensus Development Conference statement: management of short children born small for gestational age, April 24–October 1, 2001. Pediatrics 2003; 111: 1253-1261
- 13 Van Pareren Y, Mulder P, Houdijk M. et al. Adult height after long-term, continuous growth hormone (GH) treatment in short children born small for gestational age: results of a randomized, double-blind, dose-response GH trial. J Clin Endocrinol Metab 2003; 88: 3584-3590
- 14 de Graaf G, Buckley F, Skotko BG. Estimation of the number of people with Down syndrome in Europe. Eur J Hum Genet 2021; 29: 402-410
- 15 Van Gameren-Oosterom HBM, Van Dommelen P, Oudesluys-Murphy AM. et al. Healthy growth in children with Down syndrome. PLoS One 2012; 7 e31079
- 16 Binder G, Rappold GA. SHOX deficiency disorders. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A. Hrsg. GeneReviews® [Internet]. Seattle: Seattle (WA/USA): University of Washington; 2024
- 17 Munns CFJ, Glass IA, Flanagan S. et al. Familial growth and skeletal features associated with SHOX haploinsufficiency. J Pediatr Endocrinol Metab 2003; 16: 987-996
- 18 Zenker M, Edouard T, Blair JC. et al. Noonan syndrome: improving recognition and diagnosis. Arch Dis Child 2022; 107: 1073-1078
- 19 Cessans C, Ehlinger V, Arnaud C. et al. Growth patterns of patients with Noonan syndrome: correlation with age and genotype. Eur J Endocrinol 2016; 174: 641-650
- 20 Lin L, Li M, Luo J. et al. A high proportion of novel ACAN mutations and their prevalence in a large cohort of Chinese short stature children. J Clin Endocrinol Metab 2021; 106 e2711–e2719
- 21 Gkourogianni A, Andrew M, Tyzinski L. et al. Clinical characterization of patients with autosomal dominant short stature due to Aggrecan mutations. J Clin Endocrinol Metab 2017; 102: 460-469
- 22 Cui X, Cui Y, Shi L. et al. A basic understanding of Turner syndrome: incidence, complications, diagnosis, and treatment. Intractable Rare Dis Res 2018; 7: 223-228
- 23 Dantas NCB, Braz AF, Malaquias A. et al. Adult height in 299 patients with Turner syndrome with or without growth hormone therapy: results and literature review. Horm Res Paediatr 2021; 94: 63-70
- 24 Leschek EW, Rose SR, Yanovski JA. et al. Effect of growth hormone treatment on adult height in peripubertal children with idiopathic short stature: a randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab 2004; 89: 3140-3148
- 25 McDonald-McGinn DM, Sullivan KE. Chromosome 22q11.2 Deletion syndrome (DiGeorge Syndrome/Velocardiofacial Syndrome). Medicine 2011; 90: 1-18
- 26 Levy-Shraga Y, Gothelf D, Goichberg Z. et al. Growth characteristics and endocrine abnormalities in 22q11.2 deletion syndrome. Am J Med Genet A 2017; 173: 1301-1308
- 27 Murray PG, Dattani MT, Clayton PE. Controversies in the diagnosis and management of growth hormone deficiency in childhood and adolescence. Arch Dis Child 2016; 101: 96-100
- 28 Wit JM, Kamp GA, Rikken B. Spontaneous growth and response to growth hormone treatment in children with growth hormone deficiency and idiopathic short stature. Pediatr Res 1996; 39: 295-302
- 29 Godler DE, Ling L, Gamage D. et al. Feasibility of screening for chromosome 15 imprinting disorders in 16579 newborns by using a novel genomic workflow. JAMA Netw Open 2022; 5: e2141911
- 30 Angulo MA, Castro-Magana M, Lamerson M. et al. Final adult height in children with Prader-Willi syndrome with and without human growth hormone treatment. Am J Med Genet A 2007; 143 A: 1456-1461
- 31 Lindahl K, Åström E, Rubin C-J. et al. Genetic epidemiology, prevalence, and genotype–phenotype correlations in the Swedish population with osteogenesis imperfecta. Eur J Hum Genet 2015; 23: 1042-1050
- 32 Jain M, Tam A, Shapiro JR. et al. Growth characteristics in individuals with osteogenesis imperfecta in North America: results from a multicenter study. Genet Med 2019; 21: 275-283
- 33 Foreman PK, van Kessel F, van Hoorn R. et al. Birth prevalence of achondroplasia: a systematic literature review and meta-analysis. Am J Med Genet A 2020; 182: 2297-2316
- 34 Neumeyer L, Merker A, Hagenäs L. Clinical charts for surveillance of growth and body proportion development in achondroplasia and examples of their use. Am J Med Genet A 2021; 185: 401-412
- 35 Yakoreva M, Kahre T, Žordania R. et al. A retrospective analysis of the prevalence of imprinting disorders in Estonia from 1998 to 2016. Eur J Hum Genet 2019; 27: 1649-1658
- 36 Lokulo-Sodipe O, Giabicani E, Canton APM. et al. Height and body mass index in molecularly confirmed Silver-Russell syndrome and the long-term effects of growth hormone treatment. Clin Endocrinol (Oxf) 2022; 97: 284-292
- 37 Takatani R, Kubota T, Minagawa M. et al. Prevalence of pseudohypoparathyroidism and nonsurgical hypoparathyroidism in Japan in 2017: a nationwide survey. J Epidemiol 2023; 33: 569-573
- 38 Hanna P, Grybek V, Perez de Nanclares G. et al. Genetic and epigenetic defects at the GNAS locus lead to distinct patterns of skeletal growth but similar early-onset obesity. J Bone Miner Res 2018; 33: 1480-1488
- 39 Orphanet. Laron-Syndrom. Orphanet; 2025. Verfügbar unter: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=DE&Expert=63
- 40 Laron Z. Laron Syndrome (Primary Growth Hormone Resistance or Insensitivity): The Personal Experience 1958–2003. The Journal of Clinical Endocrinology & Metabolism 2004; 89 (3) 1031-1044 https://doi.org/10.1210/jc.2003–031033
- 41 Garcia J, Quintana-Domeque C. The evolution of adult height in Europe: A brief note. Economics & Human Biology 5 (2) 340-349 https://doi.org/10.1016/j.ehb.2007.02.002
- 42 Lehmann A, Floris J, Woitek U, Rühli FJ, Staub K. et al. Temporal trends, regional variation and socio-economic differences in height, BMI and body proportions among German conscripts, 1956–2010. Public Health Nutrition 2017; 20 (3) 391-403 https://doi.org/10.1017/S1368980016002408