Subscribe to RSS
DOI: 10.1055/s-0028-1082780
© Georg Thieme Verlag KG Stuttgart · New York
Resorption, Transport und Bioverfügbarkeit von Schilddrüsenhormonen
Absorption, transport and bio-availability of iodothyroninesPublication History
eingereicht: 27.11.2007
akzeptiert: 24.4.2008
Publication Date:
23 July 2008 (online)

Zusammenfassung
Klassische Schilddrüsenhormone (Jodothyronine), die zu den häufigst verordneten Präparaten zählen, weisen als Pharmaka kritischer Dosierung eine geringe therapeutische Breite auf. Mittlerweile konnten die Mechanismen ihrer Resorption teilweise aufgeklärt werden – sie findet insbesondere distal des Duodenums statt. Die Bioverfügbarkeit der Jodothyronine, die an einem enterohepatischen Kreislauf teilnehmen, liegt bei ca. 70 %. Multiple Einflussfaktoren wie gleichzeitig eingenommene Medikamente, Nahrungsmittel und bestimmte Krankheitsbilder wirken sich auf ihre Resorption aus. Im Plasma zirkulieren Schilddrüsenhormone nur zu einem Bruchteil frei, der größte Anteil ist an Plasmaproteine gebunden, wobei die Bindung wiederum vielfältigen Einflüssen unterliegt. Verantwortlich für ihre intrazelluläre Akkumulation sind mindestens zehn unterschiedliche aktive und energieabhängige Transportmechanismen, die unterschiedlich im Gewebe verteilt sind. Bei bestimmten Krankheitsbildern und physiologischen Situationen ändert sich die Plasmaproteinbindung, Bei Betrachtung der Gesamthormone kann dies zu differentialdiagnostischen Schwierigkeiten führen. Veränderungen der Proteinbindung und ebenso des Membrantransports von Jodothyroninen sind insbesondere bei kritisch Kranken (NTIS) häufig. Bei der Substitutionstherapie hypothyreoter Patienten erwiesen sich unterschiedliche Handelspräparate als nicht bioäquivalent, so dass nach Umstellung der Therapie eine Kontrolle der Stoffwechsellage notwendig ist.
Summary
The frequently prescribed classical thyroid hormones (iodothyronines) are critical dose drugs with a narrow therapeutic index. Nowadays the mechanisms of their absorption, which takes place predominantly in the jejunum and ileum, have only partly been elucidated. Bioavailability of iodothyronines whose kinetics is subject to enterohepatic circulation, is about 70 %. Several factors influence their absorption including nutrients, drugs and concomitant diseases. After being absorbed only a small fraction of thyroid hormones circulates freely in plasma, whereas the greater portion is bound to plasma proteins. This binding, too, may be influenced by numerous factors; alterations by certain diseases and physiological conditions may lead to ambiguities in differential diagnosis. Intracellular accumulation of iodothyronines is accomplished by at least ten different active and energy-dependent transporters with variable tissue distribution. Particularly in critical illness (non-thyroidal illness syndrome) alterations of protein binding and membrane transport are common. In therapy of hypothyroid patients different brand-name products lack bioequivalence and thus requiring subsequent monitoring of thyroid status after treatment has been changed among different brand-name versions.
Schlüsselwörter
Schilddrüsenhormone - Hypothyreose - Bioäquivalenz
Key words
thyroid hormones - hypothyroidism - bioequivalence
Literatur
- 1
Arafah B M.
Increased need for thyroxine in women with
hypothyroidism during estrogen therapy.
N Engl J Med.
2001;
344
1743-1749
MissingFormLabel
- 2
Benvenga S, Bartolone L, Pappalardo M A. et al .
Altered Intestinal Absorption of
L-Thyroxine Caused by Coffee.
Thyroid.
2008;
18
293-301
MissingFormLabel
- 3
Berg J A, Mayor G H.
A Study in Normal
Human Volunteers to Compare the Rate and Extent of Levothyroxine
Absorption from Synthroid® and Levoxine®.
J
Clin Pharmacol.
1993;
33
1135-1140
MissingFormLabel
- 4
Blakesley V A.
Current methodology to assess bioequivalence
of levothyroxine sodium products is inadequate.
Aaps J.
2005;
7
E42-46
MissingFormLabel
- 5
Bolk N, Visser T J, Kalsbeek A, van Domburg R T, Berghout A.
Effects of evening vs morning thyroxine
ingestion on serum thyroid hormone profiles in hypothyroid patients.
Clin Endocrinol (Oxf).
2007;
66
43-48
MissingFormLabel
- 6
Bonen A, Heynen M, Hatta H.
Distribution of monocarboxylate transporters MCT1-MCT8 in rat
tissues and human skeletal muscle.
Appl Physiol Nutr Metab.
2006;
31
31-39
MissingFormLabel
- 7
Campbell N R, Hasinoff B B, Stalts H, Rao B, Wong N C.
Ferrous sulfate reduces thyroxine efficacy
in patients with hypothyroidism.
Ann Intern Med.
1992;
117
1010-1013
MissingFormLabel
- 8
Canaris G J, Manowitz N R, Mayor G, Ridgway E C.
The Colorado
Thyroid Disease Prevalence Study.
Arch Intern Med.
2000;
160
526-534
MissingFormLabel
- 9
Centanni M, Gargano L, Canettieri G. et al .
Thyroxine in Goiter, Helicobacter pylori
Infection, and Chronic Gastritis.
N Engl J Med.
2006;
354
1787-1795
MissingFormLabel
- 10
Chatterji B, Borlak J.
Serum proteomics of lung
adenocarcinomas induced by targeted overexpression of c-raf in alveolar
epithelium identifies candidate biomarkers.
Proteomics.
2007;
7
3980-3991
MissingFormLabel
- 11
Christensen H N, Hess B, Riggs T R.
Concentration of taurine, beta-alanine,
and triiodothyronine by ascites carcinoma cells.
Cancer
Res.
1954;
14
124-127
MissingFormLabel
- 12
De Groot L J.
Non-thyroidal illness syndrome is a manifestation
of hypothalamic-pituitary dysfunction, and in view of current evidence,
should be treated with appropriate replacement therapies.
Crit
Care Clin.
2006;
22
57-86, vi
MissingFormLabel
- 13
Dietrich J W, Boehm B O.
Thyroxine
in goiter, H. pylori infection, and gastritis.
N Engl
J Med.
2006;
355
1177
MissingFormLabel
- 14
Dietrich J W, Gieselbrecht K, Holl R W, Boehm B O.
Absorption kinetics of levothyroxine is not altered by proton-pump
inhibitor therapy.
Horm Metab Res.
2006;
38
57-59
MissingFormLabel
- 15
Docter R, Friesema E C, van Stralen P G. et al .
Expression of
rat liver cell membrane transporters for thyroid hormone in Xenopus
laevis oocytes.
Endocrinology.
1997;
138
1841-1846
MissingFormLabel
- 16
Dumitrescu A M, Liao X H, Best T B, Brockmann K, Refetoff S.
A novel syndrome combining thyroid and neurological
abnormalities is associated with mutations in a monocarboxylate
transporter gene.
Am J Hum Genet.
2004;
74
168-175
MissingFormLabel
- 17 Feldt-Rasmussen U, Rasmussen Å K.
Thyroid Hormone Transport and Actions. In: Krassas, GE, Kiess W Diseases of the Thyroid in Childhood and Adolescence. Vol. 11. Basel; Karger 2007: 80-103MissingFormLabel - 18
Finke R.
Diskussion bei der KBV über evtl. Einschränkung
des Fachärztlichen Eigenlabors und Abschaffung der Laborgemeinschaften.
Endokrinologie Informationen.
2007;
31
9-14
MissingFormLabel
- 19
Fox E L.
A case of myxoedema treated by taking extract of thyroid by
the mouth.
BMJ.
1892;
2
941
MissingFormLabel
- 20
Friesema E C, Grueters A, Biebermann H. et al .
Association between mutations in
a thyroid hormone transporter and severe X-linked psychomotor retardation.
Lancet.
2004;
364
1435-1437
MissingFormLabel
- 21
Friesema E C, Jansen J, Visser T J.
Thyroid hormone transporters.
Biochem Soc Trans.
2005;
33
228-232
MissingFormLabel
- 22 Glaeske G, Janhsen K.
GEK Arzneimittelreport 2007. In: ErsatzKasse G-G, ed GEK-Edition. Vol. 55. Sankt Augustin; Asgard-Verlag 2007MissingFormLabel - 23
Grasberger H, Golcher H M, Fingerhut A, Janssen O E.
Loop variants
of the serpin thyroxine-binding globulin: implications for hormone
release upon limited proteolysis.
Biochem J.
2002;
365
311-316
MissingFormLabel
- 24
Grozinsky-Glasberg S, Fraser A, Nahshoni E, Weizman A, Leibovici L.
Thyroxine-triiodothyronine combination therapy
versus thyroxine monotherapy for clinical hypothyroidism: meta-analysis
of randomized controlled trials.
J Clin Endocrinol Metab.
2006;
91
2592-2599
MissingFormLabel
- 25
Halestrap A P, Price N T.
The
proton-linked monocarboxylate transporter (MCT) family: structure,
function and regulation.
Biochem J.
1999;
343 Pt 2
281-299
MissingFormLabel
- 26
Harmon S M, Seifert C F.
Levothyroxine-cholestyramine
interaction reemphasized.
Ann Intern Med.
1991;
115
658-659
MissingFormLabel
- 27
Havrankova J, Lahaie R.
Levothyroxine binding
by sucralfate.
Ann Intern Med.
1992;
117
445-446
MissingFormLabel
- 28
Hays M T.
Thyroid hormone and the gut.
Endocrine Research.
1988;
14
203-224
MissingFormLabel
- 29
Hennemann G, Docter R, Friesema E C, de Jong M, Krenning E P, Visser T J.
Plasma membrane
transport of thyroid hormones and its role in thyroid hormone metabolism
and bioavailability.
Endocr Rev.
2001;
22
451-476
MissingFormLabel
- 30
Hogness J R, Lee N D, Berg M K, Williams R H.
The concentration and binding of thyroxine and triiodothyronine
by rat diaphragm.
J Clin Invest.
1957;
36
803-809
MissingFormLabel
- 31
Jiskra J, Limanova Z, Vanickova Z, Kocna P.
IgA and IgG antigliadin,
IgA anti-tissue transglutaminase and antiendomysial antibodies in
patients with autoimmune thyroid diseases and their relationship
to thyroidal replacement therapy.
Physiol Res.
2003;
52
79-88
MissingFormLabel
- 32
Krehan A, Dittmar M, Hoppen A, Lichtwald K, Kahaly G J.
Randomisierte, doppelblinde Crossover-Studie zur Bioverfügbarkeit
von Levothyroxin.
Medizinische Klinik.
2002;
97
522-527
MissingFormLabel
- 33
Laji K, Rhidha B, John R, Lazarus J, Davies J S.
Abnormal serum free thyroid hormone levels due to heparin administration.
Qjm.
2001;
94
471-473
MissingFormLabel
- 34
Liel Y, Harman-Boehm I, Shany S.
Evidence for a clinically important adverse effect of fiber-enriched
diet on the bioavailability of levothyroxine in adult hypothyroid
patients.
J Clin Endocrinol Metab.
1996;
81
857-859
MissingFormLabel
- 35
Liel Y, Sperber A D, Shany S.
Nonspecific intestinal adsorption of levothyroxine by aluminum
hydroxide.
Am J Med.
1994;
97
363-365
MissingFormLabel
- 36
Meier C, Ristic Z, Klauser S, Verrey F.
Activation of system
L heterodimeric amino acid exchangers by intracellular substrates.
Embo J.
2002;
21
580-589
MissingFormLabel
- 37
Oppenheimer J H, Bernstein G, Hasen J.
Estimation of Rapidly Exchangeable Cellular
Thyroxine from the Plasma Disappearance Curves of Simultaneously
Administered Thyroxine-131I and Albumin 125I.
Journal
of Clinical Investigation.
1967;
46
762-777
MissingFormLabel
- 38
Peeters R P, van der Geyten S, Wouters P J. et al .
Tissue thyroid
hormone levels in critical illness.
J Clin Endocrinol
Metab.
2005;
90
6498-6507
MissingFormLabel
- 39
Rajatanavin R, Liberman C, Lawrence G D, D’Arcangues C M, Young R A, Emerson C H.
Euthyroid hyperthyroxinemia and thyroxine-binding prealbumin excess
in islet cell carcinoma.
J Clin Endocrinol Metab.
1985;
61
17-21
MissingFormLabel
- 40
Schifferdecker E, Hering S, Bohm B O. et al .
Thyroid hormone binding inhibition in critically
ill patients – who is the inhibitor?.
Exp Clin
Endocrinol.
1990;
95
267-270
MissingFormLabel
- 41
Singh N, Singh P N, Hershman J M.
Effect of calcium carbonate on the absorption
of levothyroxine.
JAMA.
2000;
283
2822-2825
MissingFormLabel
- 42
Sperber A D, Liel Y.
Evidence
for interference with the intestinal absorption of levothyroxine
sodium by aluminum hydroxide.
Arch Intern Med.
1992;
152
183-184
MissingFormLabel
- 43
Stockigt J R, Lim C F, Barlow J W. et al .
Interaction of
furosemide with serum thyroxine-binding sites: in vivo and in vitro
studies and comparison with other inhibitors.
J Clin Endocrinol
Metab.
1985;
60
1025-1031
MissingFormLabel
- 44
Surks M I, Sievert R.
Drugs and thyroid function.
N Engl J Med.
1995;
333
1688-1694
MissingFormLabel
- 45
Van den Berghe G.
Dynamic neuroendocrine responses to critical illness.
Front
Neuroendocrinol.
2002;
23
370-391
MissingFormLabel
- 46
Wang R, Nelson J C, Wilcox R B.
Salsalate and salicylate binding to and
their displacement of thyroxine from thyroxine-binding globulin,
transthyrin, and albumin.
Thyroid.
1999;
9
359-364
MissingFormLabel
Dr. med. Johannes W. Dietrich
Medizinische Klinik I, Allgemeine Innere Medizin, Endokrinologie
und Diabetologie, BG Universitätsklinikum Bergmannsheil
GmbH, Ruhr-Universität Bochum
Bürkle-de-la-Camp-Platz
1
44789 Bochum
Phone: 0234/302-6400
Fax: 0234/302-6403
Email: johannes.w.dietrich@bergmannsheil.de