References and Notes
For recent example of transition-metal-catalyzed homodimerization
of alkynes, see:
<A NAME="RU07608ST-1A">1a</A>
Ohmura T.
Yorozuya S.
Yamamoto Y.
Miyaura N.
Organometallics
2000,
19:
365
<A NAME="RU07608ST-1B">1b</A>
Yang C.
Nolan SP.
J. Org. Chem.
2002,
67:
591
<A NAME="RU07608ST-1C">1c</A>
Melis K.
Vos DD.
Jacobs P.
Verpoort F.
J. Organomet. Chem.
2002,
659:
159
<A NAME="RU07608ST-1D">1d</A>
Ogoshi S.
Ueta M.
Oka M.
Kurosawa H.
Chem. Commun.
2004,
2732
<A NAME="RU07608ST-1E">1e</A>
Chen X.
Xue P.
Sung HHY.
Williams ID.
Peruzzini M.
Bianchini C.
Jia G.
Organometallics
2005,
24:
4330
<A NAME="RU07608ST-1F">1f</A>
Lee C.-C.
Lin Y.-C.
Liu Y.-H.
Wang Y.
Organometallics
2005,
24:
136
<A NAME="RU07608ST-1G">1g</A>
Weng W.
Guo C.
Celenligil-Cetin R.
Foxman BM.
Ozerov OV.
Chem. Commun.
2006,
197
<A NAME="RU07608ST-2A">2a</A>
Trost BM.
McIntoshi MC.
J. Am. Chem. Soc.
1995,
117:
7255
<A NAME="RU07608ST-2B">2b</A>
Trost BM.
Sorum MT.
Chan C.
Harms AE.
Rhter G.
J. Am. Chem. Soc.
1997,
119:
698
<A NAME="RU07608ST-2C">2c</A>
Yi CS.
Liu N.
Organometallics
1998,
17:
3158
<A NAME="RU07608ST-2D">2d</A>
Trost
BM.
Frontier AJ.
J.
Am. Chem. Soc.
2000,
122:
11727
<A NAME="RU07608ST-2E">2e</A>
Chen L.
Li C.
Tetrahedron Lett.
2004,
45:
2771
<A NAME="RU07608ST-2F">2f</A>
Hirabayashi T.
Sakaguchi S.
Ishii Y.
Adv.
Synth. Catal.
2005,
347:
872
<A NAME="RU07608ST-2G">2g</A>
Nishimura T.
Guo X.-X.
Ohnishi K.
Hayashi T.
Adv. Synth. Catal.
2007,
349:
2669
<A NAME="RU07608ST-2H">2h</A>
Katagiri T.
Tsurugi H.
Funayama A.
Satoh T.
Miura M.
Chem.
Lett.
2007,
36:
830
<A NAME="RU07608ST-3A">3a</A>
Akita M.
Yasuda H.
Nakamura A.
Bull. Chem. Soc. Jpn.
1984,
57:
480
<A NAME="RU07608ST-3B">3b</A>
Wang J.
Kapon M.
Berthet JC.
Ephritikhine M.
Eisen MS.
Inorg.
Chim. Acta
2002,
334:
183
<A NAME="RU07608ST-3C">3c</A>
Katayama H.
Yari H.
Tanaka M.
Ozawa F.
Chem. Commun.
2005,
4336
<A NAME="RU07608ST-3D">3d</A>
Katagiri T.
Tsurugi H.
Satoh T.
Miura M.
Chem. Commun.
2008,
3405
<A NAME="RU07608ST-3E">3e</A>
Tsukada N.
Ninomiya S.
Aoyama Y.
Inoue Y.
Org. Lett.
2007,
9:
2919
<A NAME="RU07608ST-4">4</A>
Ogata K.
Toyota A.
J. Organomet. Chem.
2007,
692:
4139
<A NAME="RU07608ST-5">5</A>
Baiely PJ.
Pace S.
Coord. Chem. Rev.
2001,
214:
91 ; and references therein
<A NAME="RU07608ST-6">6</A>
Synthesis of {Ir[(N
2
(
i
-Pr)
2
CN(
i
-Pr)
2
](cod)} (1)
A
solution of [IrCl(cod)]2 (281 mg, 0.42
mmol) in THF (5 mL) was cooled to -78 ˚C,
and then a THF solution of Li[(N2 (i-Pr)2CN(i-Pr)2],
which was prepared by the reaction of the DIC (0.13 mL, 0.84 mmol)
with LDA solution (1.8 M in heptane-THF-ethylbenzene
solution, 0.48 mL, 0.86 mmol) at -78 ˚C,
was added. The mixture was allowed to warm to r.t. After 4 h, the
volatiles were removed under reduced pressure. The residual solid
was extracted with toluene and the filtrate was evaporated off under
high vacuum to give orange complex 1 (278
mg, 0.53 mmol, 63%). ¹H NMR (400 MHz,
C6D6): δ = 0.96 (d, J = 6.4 Hz,
12
H, i-PrCH3), 1.23 (d, J = 6.9 Hz,
12 H, i-PrCH3), 1.39 (d, J = 7.8 Hz,
4 H, cod), 2.20 (br, 4 H, cod), 3.43 (sept, J = 6.9 Hz,
2 H, i-PrCH), 3.80 (sept, J = 6.4 Hz,
2 H, i-PrCH), 4.09 (br, 4 H, cod). ¹³C{¹H} NMR
(100 MHz, CDCl3): δ = 22.8, 25.0, 32.5,
47.1, 48.6, 58.9 (cod, i-Pr), 128.5 (cod),
179.7 (NCN). Anal. Calcd for C21H40IrN3:
C, 47.88; H, 7.65; N, 7.98. Found: C, 47.82; H, 7.60; N, 8.00.
<A NAME="RU07608ST-7A">7a</A>
Jenke T.
Stoeckli-Evans H.
Bodensieck U.
Suess-Fink G.
J.
Organomet. Chem.
1991,
401:
347
<A NAME="RU07608ST-7B">7b</A>
Yip
H.-K.
Che C.-M.
Zhou Z.-Y.
Mak TCW.
J. Chem. Soc.,
Chem. Commun.
1992,
1369
<A NAME="RU07608ST-7C">7c</A>
Bailey PJ.
Mitchell LA.
Parson S.
J. Chem. Soc., Dalton Trans.
1996,
2839
<A NAME="RU07608ST-7D">7d</A>
Dinger MB.
Henderson W.
Chem. Commun.
1996,
211
<A NAME="RU07608ST-7E">7e</A>
Holman KT.
Robinson SD.
Sahajpal A.
Steed JW.
J.
Chem. Soc., Dalton Trans.
1999,
15
<A NAME="RU07608ST-7F">7f</A>
Foley SR.
Yap GPA.
Richeson DS.
Chem. Commun.
2000,
1515
<A NAME="RU07608ST-7G">7g</A>
Bailey PJ.
Grant KJ.
Mitchell LA.
Pace S.
Parkin A.
Parsons S.
J. Chem. Soc.,
Dalton Trans.
2000,
1887
<A NAME="RU07608ST-7H">7h</A>
Berry JF.
Cotton
FA.
Huang P.
Murillo CA.
Wang X.
Dalton Trans.
2005,
3713
<A NAME="RU07608ST-8A">8a</A>
Robinson SD.
Sahajal A.
J.
Chem. Soc., Dalton Trans.
1997,
3349
<A NAME="RU07608ST-8B">8b</A>
Robinson SD.
Sahajpal A.
Steed J.
Inorg. Chim. Acta
2000,
303:
265
<A NAME="RU07608ST-8C">8c</A>
Holland AW.
Bergman RG.
J.
Am. Chem. Soc.
2002,
124:
9010
<A NAME="RU07608ST-9">9</A>
Crystal Data for
1
C21H40IrN3, MW = 526.79,
monoclinic, P21/n, a = 20.5195 (4) Å, b = 15.5067
(4) Å, c = 27.6890
(4) Å, β = 102.4145 (16)˚, V = 8604.4
(3) Å3, Z = 16, D
calc = 1.626
g/cm³, µ (Mo Kα) = 62.328
cm-¹, 84841 measured reflections, 24677 independent
(R
int = 0.063),
13318 observed [I > 2σ(I)]. R1 = 0.0353, wR2 = 0.0903
(all data). Atomic coordinates, thermal parameters, bond distances,
and angles have been deposited at the Cambridge Crystallographic
Data Center. CCDC number: 668977.
<A NAME="RU07608ST-10">10</A>
General Procedure
for Homodimerization of Terminal Alkynes (Table 1 and Scheme 2)
The
mixture of 1 (16 mg, 0.03 mmol), toluene
(3 mL), phosphine (16 mg, 0.06 mmol), and terminal alkyne (1.0 mmol)
was charged in a sealed tube under argon atmosphere. After stirring
for 6 h at 80 ˚C, the solvent was removed, and the residue
was chromatographed on SiO2, using hexane or Et2O-hexane
(1:3) as eluent. The solvent was removed to give dimeric product 3 or 4.
<A NAME="RU07608ST-11">11</A>
Results of dimerization of 1-octyne(2a) catalyzed by
1-trialkylphosphine
system; 1-Et3P: yield
60%, E/Z = 42:58; 1-n-Pr3P: yield 79%, E/Z = 40:60
<A NAME="RU07608ST-12A">12a</A>
Bianchini C.
Peruzzini M.
Zanobini F.
Frediani P.
Albinati A.
J. Am. Chem. Soc.
1991,
113:
5453
<A NAME="RU07608ST-12B">12b</A>
Wakatsuki Y.
Yamazaki H.
Kumegawa N.
Satoh T.
Satoh JY.
J.
Am. Chem. Soc.
1991,
113:
9604
<A NAME="RU07608ST-12C">12c</A>
Bianchini C.
Frediani P.
Masi D.
Peruzzini M.
Zanobini F.
Organometallics
1994,
13:
4616
<A NAME="RU07608ST-13">13</A>
General Procedure
for Cross-Dimerization of Silylacetylene with Terminal Alkynes (Table
2 and Scheme 3)
The mixture of 1 (25
mg, 0.05 mmol), toluene (3 mL), phosphine (26 mg, 0.10 mmol), silylacetylene
(1.0 mmol), and terminal alkyne (2.0 mmol) was charged in sealed
tube under argon atmosphere. After stirring for 6 h at 80 ˚C,
the solvent was removed, and the residue was chromatographed on
SiO2, using hexane as eluent. Homo-dimer was eluted first.
Then the eluate containing cross-dimer 5 was
obtained. The solvent was removed to give cross-dimer 5 as colorless or pale-yellow oil.
Spectral
Data for New Compounds
Product (E)-5d: ¹H NMR (400 MHz,
CDCl3): δ = 0.18 (s,
9 H,
SiMe3), 0.87 (d, J = 7.0
Hz, 6 H, CH3), 1.20-1.30 (m,
2 H,
CH2), 1.50-1.60 (m, 1 H, CH), 2.00-2.20
(m, 2 H, CH2), 5.50 (dt, J = 15.8,
1.8 Hz, 1 H, CH=CH), 6.21 (dt, J = 15.8, 7.0
Hz, 1 H, CH=CH). ¹³C{¹H} NMR
(100 MHz, CDCl3):
δ = 0.0
(s, SiMe3), 22.4, 27.3, 30.9, 37.6 (s, C6H13),
92.4, 104.2 (s, C=C), 109.4, 146.5 (C=C). HRMS
(EI): m/z [M - Me]+ calcd
for C11H19Si: 179.1256; found: 179.1259.
Product
(Z)-5d: ¹H
NMR (400 MHz, CDCl3): δ = 0.19 (s,
9
H, SiMe3), 0.90 (d, J = 6.4
Hz, 6 H, CH3), 1.20-1.30 (m,
2 H,
CH2), 1.50-1.60 (m, 1 H, CH), 2.30-2.40
(m, 2 H, CH2), 5.46 (d, J = 10.5
Hz, 1 H, CH=CH), 5.95 (dt, J = 10.5,
7.6 Hz, 1 H, CH=CH). ¹³C{¹H} NMR
(100 MHz, CDCl3): δ = 0.0 (s, SiMe3),
22.4, 27.3, 30.9, 37.6 (s, C6H13), 88.7, 92.4
(s, C=C), 109.4, 146.5 (C=C). HRMS (EI): m/z [M - Me]+ calcd for
C11H19Si: 179.1256; found: 179.1213.
Product
(E)-5e: ¹H
NMR (400 MHz, CDCl3): δ = 0.17 (s,
9
H, SiMe3), 3.43 (d, J = 6.9
Hz, 2 H, CH2), 5.53 (dt, J = 15.6,
1.8 Hz, 1 H, CH=CH), 6.35 (dt, J = 15.6,
6.9 Hz,
1 H, CH=CH), 7.10-7.40 (m, 5
H, Ph). ¹³C{¹H} NMR
(100 MHz, CDCl3): δ = -0.1
(s, SiMe3), 39.3 (s, CH2Ph), 93.5, 103.7 (s,
C=C), 111.0, 126.4, 128.5, 128.7, 138.6, 144.2 (S, C=C,
Ph). HRMS (EI): m/z [M]+calcd
for C14H18Si: 214.1178; found: 214.1169.
Product
(Z)-5e: ¹H
NMR (400 MHz, CDCl3): δ = 0.22 (s,
9
H, SiMe3), 3.67 (d, J = 7.3
Hz, 2 H, CH2), 5.60 (d, J = 11.0 Hz,
1 H, CH=CH), 6.10 (dt, J = 10.6,
7.3 Hz, 1 H, CH=CH), 7.10-7.40 (m, 5 H, Ph). ¹³C{¹H} NMR
(100 MHz, CDCl3): δ = -0.02
(s, SiMe3), 36.5 (s, CH2Ph), 99.0, 101.8 (s,
C=C), 109.9, 126.2, 128.5, 128.5, 139.7, 143.2 (S, C=C,
Ph). HRMS (EI): m/z [M]+ calcd
for C14H18Si: 214.1178; found: 214.1158.
Product
(E)-5g: ¹H
NMR (400 MHz, CDCl3): δ = 0.22 (s,
9
H, SiMe3), 2.34 (s, 3 H, CH3), 6.12 (d, J = 16.5 Hz,
1 H, CH=CH), 6.98 (d, J = 16.5
Hz, 1 H, CH=CH), 7.10-7.30 (m, 4 H, Ar). ¹³C{¹H} NMR
(100 MHz, CDCl3): δ = 0.0 (s, SiMe3),
21.5 (s, CH3), 96.4, 104.6 (s, C=C), 106.9,
126.2, 129.0, 129.4, 138.9, 142.4 (s, C=C, Ph). HRMS (EI): m/z [M]+ calcd
for C14H18Si: 214.1178; found: 214.1171.
Product
(E)-5h: ¹H
NMR (400 MHz, CDCl3): δ = 0.11 (s,
9
H, SiMe3), 3.81 (s, 3 H, CH3, 6.16 (d, J = 19.2 Hz,
1 H, CH=CH), 6.48 (d, J = 19.2
Hz, 1 H, CH=CH), 6.84 (d, J = 9.2
Hz, 2 H, Ar), 7.37 (d, J = 9.2
Hz, 2 H, Ar). ¹³C{¹H} NMR
(100 MHz, CDCl3): δ = -1.6
(s, SiMe3), 55.2 (s, OCH3), 88.4, 89.9 (s,
C=C), 113.9, 128.4, 132.1, 133.0, 144.7, 159.6 (s, C=C,
Ph). HRMS (EI): m/z [M]+ calcd
for C14H18OSi: 230.1127; found: 230.1133.
Product
(E)-5i: ¹H
NMR (400 MHz, CDCl3): δ = 0.80-2.20 (m,
16 H, C6H13, i-PrCH),
1.07 (br d, 18 H, i-PrCH3),
5.52 (dt, J = 16.0,
1.4 Hz, 1 H, CH=CH), 6.20 (dt, J = 16.0,
6.9 Hz, 1 H, CH=CH). ¹³C{¹H} NMR
(100 MHz, CDCl3): δ = 11.3, 14.1, 22.6,
28.6, 28.9, 31.7, 33.1 (s, C6H13, i-PrCH), 18.6 (s, i-PrCH3),
88.5, 106.1 (s, C=C), 109.8, 145.8 (s, CH=CH).
HRMS (EI): m/z [M]+ calcd
for C19H36Si: 292.2586; found: 292.2583.
Product
(Z)-5i: ¹H
NMR (400 MHz, CDCl3): δ = 0.80-2.40 (m,
16 H, C6H13, i-PrCH),
1.09 (br d, 18 H, i-PrCH3),
5.50 (d, J = 10.5
Hz, 1 H, CH=CH), 6.0 (m, 1 H, CH=CH). ¹³C{¹H} NMR
(100 MHz, CDCl3): δ = 11.3, 14.1, 22.6,
28.8, 29.0, 30.4, 31.7 (s, C6H13, i-PrCH), 18.6 (s, i-PrCH3),
94.6, 103.9 (s, C=C), 109.6, 145.2 (s, CH=CH).
HRMS (EI): m/z [M]+ calcd
for C19H36Si: 292.2586; found: 292.2587.
Product
(E)-5j: ¹H
NMR (400 MHz, CDCl3): δ = 0.11 (s,
6
H, SiMe2), 0.80-2.20 (m, 13 H, C6H13),
0.94 (s, 9 H, t-Bu), 5.50 (d, J = 15.8 Hz,
1 H, CH=CH), 6.21 (dt, J = 15.8,
7.0 Hz, 1 H, CH=CH). ¹³C{¹H} NMR
(100 MHz, CDCl3): δ =
-4.6
(s, SiMe2), 14.1, 16.6, 22.6, 28.6, 28.8, 31.6, 33.1 [s, C6H13, C(CH3)3],
26.1 [s, C(CH3)3],
90.6, 104.8 (s, C=C), 109.6, 146.2 (s, CH=CH).
HRMS (EI): m/z [M]+ calcd
for C16H30Si: 250.2117; found: 250.2116.
Product
(Z)-5j: ¹H
NMR (400 MHz, CDCl3): δ = 0.13 (s,
6
H, SiMe2), 0.80-2.40 (m, 13 H, C6H13),
0.96 (s, 9 H, t-Bu), 5.48 (d, J = 10.8 Hz,
1 H, CH=CH), 5.96 (dt, J = 10.8,
7.4 Hz, 1 H, CH=CH). ¹³C{¹H} NMR
(100 MHz, CDCl3): δ =
-4.6
(s, SiMe2), 14.1, 16.6, 22.6, 28.7, 28.9, 30.3, 31.6 [s, C6H13, C(CH3)3],
26.1 [s, C(CH3)3],
96.6, 102.8 (s, C=C), 109.2, 145.6 (s, CH=CH).
HRMS (EI): m/z [M]+ calcd
for C16H30Si: 250.2117; found: 250.2108.
<A NAME="RU07608ST-14">14</A>
Formation ratio of (E)-5a/(E)-3a = 77:23 (determined by ¹H NMR).
<A NAME="RU07608ST-15">15</A>
Result of cross-dimerization between 2c and 2a catalyzed
by 1-Et2PhP system:
yield 88%, E/Z = 9:91.