Subscribe to RSS
DOI: 10.1055/s-0028-1083539
Tandem Aza-Michael-Condensation-Aldol Cyclization Reaction: Approach to the Construction of DE Synthon of (±)-Camptothecin
Publication History
Publication Date:
15 October 2008 (online)

Abstract
An efficient synthesis of the DE ring of camptothecin, employing a Reformatsky and a tandem one-pot, three-step transformation involving aza-Michael reaction, condensation with ethyl malonyl chloride followed by intramolecular ‘aldol’ reaction to furnish the dihydropyridone derivative from commercially available starting materials, has been achieved.
Key words
natural products - alkaloids - antitumor - Aldol cyclizations - Reformatsky reaction
- 1
Wall ME.Wani MC.Cook CE.Palmer KH.MacPhail AT.Sim GA. J. Am. Chem. Soc. 1966, 88: 3888 - 2a
Hecht SM.Newman DJ.Kingston DGI. J. Nat. Prod. 2000, 63: 1273Reference Ris Wihthout Link - 2b
Das B.Madhusudan P.Reddy PV.Anita Y. Indian J. Chem., Sect. B 2001, 40: 453Reference Ris Wihthout Link - 2c
Kitajima M.Yoshida S.Yamagata K.Nakamura M.Takayama H.Saito K.Seki H.Aimi N. Tetrahedron 2002, 58: 9169Reference Ris Wihthout Link - 2d
Puri SC.Verma V.Amna T.Quzi GN.Spiteller M. J. Nat. Prod. 2005, 68: 1717Reference Ris Wihthout Link - 3a
Hsiang YH.Hertzberg R.Hecht SM.Liu LF. J. Biol. Chem. 1985, 260: 14873Reference Ris Wihthout Link - 3b
Khon KW.Pommier Y. Ann. N. Y. Acad. Sci. 2000, 922: 11Reference Ris Wihthout Link - 3c
Staker BL.Hjerrild K.Feese MD.Behnke CA.Burgin AB.Stewart L. Proc. Natl. Acad. Sci. U. S. A. 2002, 99: 15387Reference Ris Wihthout Link - 4
Kingsbury WD.Boehm JC.Jakas DR.Holden KG.Hecht SM.Gallagher G.Caranfa MJ.McCabe FL.Faucette LF.Johnson RK.Hertzberg RP. J. Med. Chem. 1991, 34: 98 - 5a
Negoro S.Fukuoka M.Masuda N.Takada M.Kusunoki Y.Matsui K.Takifuji N.Kudoh S.Niitani H.Taguchi T. J. Natl. Cancer Inst. 1991, 83: 1164Reference Ris Wihthout Link - 5b
Kawato Y.Aonuma M.Hirata Y.Kuga H.Sato K. Cancer Res. 1991, 51: 4187Reference Ris Wihthout Link - 6
Priel E.Showalter SD.Blair DG. AIDS Res. Hum. Retroviruses 1991, 7: 65 - 7a
Cragg GM.Newman DJ. J. Nat. Prod. 2004, 67: 232Reference Ris Wihthout Link - 7b
Butler MS. J. Nat. Prod. 2005, 22: 162Reference Ris Wihthout Link - For reviews on camptothecin and its derivatives, see:
- 8a
Hutchison CR. Tetrahedron 1981, 37: 1047Reference Ris Wihthout Link - 8b
Wall ME.Wani MC. In The Alkaloids Vol. 50:Cordell GA. Academic Press; San Diego CA: 1998. Chap. 13. p.509Reference Ris Wihthout Link - 8c
Du W. Tetrahedron 2003, 59: 8649 ; and references cited thereinReference Ris Wihthout Link - 8d
Twin H.Batey RA. Org. Lett. 2004, 6: 4913Reference Ris Wihthout Link - 8e
Yu J.Depne J.Kronenthal D. Tetrahedron Lett. 2004, 45: 7247Reference Ris Wihthout Link - 8f
Thomas OP.Dumas C.Zaparucha A.Husson HP. Eur. J. Org. Chem. 2004, 5: 1128Reference Ris Wihthout Link - 8g
Rahier NJ.Cheng K.Gao R.Eisenhauser BM.Hecht SM. Org. Lett. 2005, 7: 835Reference Ris Wihthout Link - 8h
Anderson RJ.Raolji GB.Kanazawa A.Greene AE. Org. Lett. 2005, 7: 2989Reference Ris Wihthout Link - 8i
Brunin T.Hénichart J.-P.Rigo B. Tetrahedron 2005, 61: 7916Reference Ris Wihthout Link - 8j
Tangirala RS.Dixon R.Yang D.Ambrus A.Antony S.Agama K.Pommier Y.Curran DP. Bioorg. Med. Chem. Lett. 2005, 15: 4736Reference Ris Wihthout Link - 8k
Li Q.-Y.Zu Y.-G.Shi R.-Z.Yao L.-P. Curr. Med. Chem. 2006, 13: 2021Reference Ris Wihthout Link - 8l
Tang C.-J.Babijak M.Anderson RJ.Greene AE.Kanazawa A. Org. Biomol. Chem. 2006, 4: 3757Reference Ris Wihthout Link - 8m
Tangirala RS.Antony S.Agama S.Pommier Y.Anderson BD.Bevins R.Curran DP. Bioorg. Med. Chem. 2006, 14: 6202Reference Ris Wihthout Link - 8n
Elban MA.Sun W.Eisenhauer BM.Gao R.Hecht SM. Org. Lett. 2006, 16: 3513Reference Ris Wihthout Link - 8o
Brumin T.Legentil L.Henichart J.-P.Rigo B. Tetrahedron 2006, 62: 3959Reference Ris Wihthout Link - 8p
Dai W.Petersen JL.Wang KK. Org. Lett. 2006, 8: 4665Reference Ris Wihthout Link - 8q
Xiao X.Antony S.Pommier Y.Cushman M. J. Med. Chem. 2006, 49: 1408Reference Ris Wihthout Link - 8r
Peters R.Althaus M.Nagy A.-L. Org. Biomol. Chem. 2006, 4: 498Reference Ris Wihthout Link - 8s
Hiroya K.Kawamoto K.Sakamoto T. Synlett 2006, 2636Reference Ris Wihthout Link - 8t
Peters R.Althaus M.Nagy AL. Org. Biomol. Chem. 2006, 4: 498Reference Ris Wihthout Link - 8u
Zhou HB.Liu GS.Yao ZJ. Org. Lett. 2007, 9: 2003Reference Ris Wihthout Link - 9a
Chavan SP.Venkatraman MS. Tetrahedron Lett. 1998, 39: 6745Reference Ris Wihthout Link - 9b
Chavan SP.Sivappa R. Tetrahedron Lett. 2004, 45: 3113Reference Ris Wihthout Link - 9c
Chavan SP.Pasupathy K.Venkatraman MS.Kale RR. Tetrahedron Lett. 2004, 45: 6879Reference Ris Wihthout Link - 9d
Chavan SP.Sivappa R. Tetrahedron Lett. 2004, 45: 3941Reference Ris Wihthout Link - 9e
Chavan SP.Venkatraman MS. Arkivoc 2005, 165Reference Ris Wihthout Link - 9f
Chavan SP.Pathak AB.Kalkote UR. Tetrahedron Lett. 2007, 48: 6561Reference Ris Wihthout Link - 9g
Chavan SP.Pathak AB.Kalkote UR. Synlett 2007, 2635Reference Ris Wihthout Link - 10
Ram RN.Charles I. Tetrahedron 1997, 53: 7335 - 11
Su J.Qiu G.Liang S.Hu X. Synth. Commun. 2005, 35: 1427 - 12
Rapoport H.Tang CSF.Morrow CJ. J. Am. Chem. Soc. 1975, 97: 159 - 13
Comins DL.Hao H.Saha JK.Gao J. J. Org. Chem. 1994, 59: 5120
References and Notes
All compounds were characterized by
IR, ¹H NMR,
¹³C
NMR, and MS analysis.
Spectral Data
Compound 8: ¹H NMR (200 MHz,
CDCl3): δ = 0.90 (t, J = 7.4
Hz, 3 H), 1.24 (t, J = 7.1
Hz, 3 H), 1.40 (t, J = 7.3
Hz, 3 H), 1.70-1.81 (m, 1 H), 1.92-2.04 (m, 1
H), 3.5 (t, J = 7.4 Hz,
1 H), 4.13 (q, J = 7.1,
2 H), 4.45 (q, J = 7.3
Hz, 2 H), 5.09 (d, J = 14.4
Hz, 1 H), 5.17 (d, J = 14.4
Hz, 1 H), 6.28 (d, J = 7.2
Hz, 1 H), 7.24 (d, J = 7.2
Hz, 1 H), 7.29-7.35 (s, 5 H).
Compound 9: ¹H NMR (200 MHz,
CDCl3): δ = 0.92 (t, J = 7.4
Hz, 3 H), 1.26 (t, J = 7.2
Hz, 3 H), 1.35 (t, J = 7.3
Hz, 3 H), 1.51-1.71 (m, 2 H), 1.82-1.96 (m, 1
H), 2.21-2.50 (m, 1 H), 3.22-3.42 (m, 2 H), 3.60-3.73
(m, 1 H), 4.15 (q, J = 7.2
Hz, 2 H), 4.36 (q, J = 7.3
Hz, 2 H), 4.49 (d, J = 14.7 Hz,
1 H), 4.66 (d, J = 14.7
Hz, 1 H), 7.24-7.30 (m, 5 H).
Compound 14: ¹H NMR (200 MHz,
CDCl3): δ = 0.96 (t, J = 7.4
Hz, 3 H), 1.24 (t, J = 7.1
Hz, 3 H), 1.60-1.77 (m,
1 H), 1.92-2.10
(m, 1 H), 4.13 (q, J = 7.1
Hz, 2 H), 4.96 (t, J = 7.3
Hz, 1 H), 5.13 (s, 2 H), 6.30 (d, J = 7.2
Hz, 1 H), 7.42 (d, J = 7.2
Hz, 1 H), 7.31-7.38 (m, 5 H), 10.52 (s, 1 H).
Compound 6: ¹H NMR (400 MHz;
CD3OD): δ = 0.93 (t, J = 7.3
Hz, 3 H), 1.86 (q, J = 7.2
Hz, 2 H), 5.22 (d, J = 16.2 Hz,
1 H), 5.41 (d, J = 16.2
Hz, 1 H), 6.63 (d, J = 6.8
Hz,
1 H), 7.46 (d, J = 6.8
Hz, 1 H).
Typical Procedure
for Compound 9
To a stirred solution of keto compound 10 (5 g, 29.4 mmol) in dry CH2Cl2 benzyl
amine (3.21 mL, 29.4 mmol) was added dropwise at r.t. and allowed
to stir for 20 min. After the completion of the reaction (TLC),
K2CO3 (14.2 g, 102.9 mmol) was added followed
by dropwise addition of ethyl malonyl chloride (4.89 mL, 38.22 mmol)
at 0 ˚C. The mixture was stirred at r.t. until
completion (1 h, TLC), and then was filtered, and the residue was
washed with CH2Cl2 (3 × 30
mL). The organic layer was washed with H2O, brine, dried
over anhyd Na2SO4, filtered, and concentrated
on a rotary evaporator under diminished pressure. The resulting residue
was purified by flash column chromatography (silica gel) using EtOAc-PE
(3:7) as an eluent, affording the dihydropyridone 9 as
a colorless liquid (7.6 g, 70% yield).