References and Notes
<A NAME="RG29408ST-1">1</A>
Gewald K.
Schinke E.
Böttcher H.
Chem.
Ber.
1966,
99:
94
For a review on the synthesis of
2-aminothiophenes by Gewald reaction, see:
<A NAME="RG29408ST-2A">2a</A>
Sabnis RW.
Rangnekar DW.
Sonawane ND.
J. Heterocycl. Chem.
1999,
36:
333
For a review on multicomponent reactions of carbonyl compounds and
derivatives of cyanoacetic acid, see:
<A NAME="RG29408ST-2B">2b</A>
Shestopalov AM.
Shestopalov AA.
Rodinovskaya LA.
Synthesis
2008,
1
<A NAME="RG29408ST-3">3</A>
Maradiya HR.
Turk.
J. Chem.
2001,
25:
441
<A NAME="RG29408ST-4A">4a</A>
LaPorte MG.
Lessen TA.
Leister L.
Cebzanov D.
Amparo E.
Faust C.
Ortlip D.
Bailey TR.
Nitz TJ.
Chunduru SK.
Young DC.
Burns CJ.
Bioorg. Med. Chem. Lett.
2006,
16:
100
<A NAME="RG29408ST-4B">4b</A>
Gütschow M.
Kuerschner L.
Neumann U.
Pietsch M.
Löser R.
Koglin N.
Eger K.
J.
Med. Chem.
1999,
42:
5437
<A NAME="RG29408ST-5">5</A>
Koike K.
Jia Z.
Nikaido T.
Liu Y.
Zhao Y.
Guo D.
Org.
Lett.
1999,
1:
197
<A NAME="RG29408ST-6A">6a</A>
Bonauer C.
Zabel M.
König B.
Org. Lett.
2004,
6:
1349
<A NAME="RG29408ST-6B">6b</A>
Gervay J.
Ramamoorthy PS.
Mamuya NN.
Tetrahedron
1997,
53:
11039
<A NAME="RG29408ST-6C">6c</A>
Gervay J.
Flaherty
TM.
Nguyen C.
Tetrahedron Lett.
1997,
38:
1493
<A NAME="RG29408ST-6D">6d</A>
Baldauf C.
Günther R.
Hofmann H.-J.
J.
Org. Chem.
2004,
69:
6214
<A NAME="RG29408ST-6E">6e</A>
Sünnemann HW.
Hofmeister A.
Magull J.
de Meijere A.
Chem.
Eur. J.
2006,
12:
8336
<A NAME="RG29408ST-7A">7a</A>
Kunkel E.
Reichelt I.
Reissig H.-U.
Liebigs Ann. Chem.
1984,
512
For reviews of donor-acceptor-substituted cyclopropanes,
see:
<A NAME="RG29408ST-7B">7b</A>
Reissig H.-U.
Top.
Curr. Chem.
1988,
144:
73
<A NAME="RG29408ST-7C">7c</A>
Reissig H.-U.
Zimmer R.
Chem. Rev.
2003,
103:
1151
<A NAME="RG29408ST-8A">8a</A>
Reichelt I.
Reissig H.-U.
Synthesis
1984,
786
<A NAME="RG29408ST-8B">8b</A>
Grimm EL.
Reissig H.-U.
J. Org.
Chem.
1985,
50:
242
<A NAME="RG29408ST-8C">8c</A>
Grimm EL.
Zschiesche R.
Reissig H.-U.
J. Org. Chem.
1985,
50:
5543
<A NAME="RG29408ST-8D">8d</A>
Ullmann A.
Schnaubelt J.
Reissig H.-U.
Synthesis
1998,
1052
<A NAME="RG29408ST-8E">8e</A>
Zimmer R.
Ziemer A.
Gruner M.
Brüdgam I.
Hartl H.
Reissig
H.-U.
Synthesis
2001,
1649
<A NAME="RG29408ST-8F">8f</A>
Patra PK.
Reissig H.-U.
Eur.
J. Org. Chem.
2001,
4195
<A NAME="RG29408ST-8G">8g</A>
Veljkovic I.
Zimmer R.
Reissig H.-U.
Brüdgam I.
Hartl H.
Synthesis
2006,
2677
<A NAME="RG29408ST-9">9</A>
Typical Procedure
for the Synthesis of 2-Aminothio-phene 4a Using the One-Pot/One-Stage
Procedure
Siloxycyclopropanecarboxylate 1a (0.209 g, 1.06 mmol), tert-butyl
cyanoacetate (0.143 g, 1.01 mmol) and sulfur (0.032 g, 1.01 mmol)
were suspended in MeOH (2 mL), then Et2NH (0.11 mL, 1.01
mmol) was added. The mixture was refluxed for 7 h, and then stirred
overnight at r.t. After addition of water and EtOAc the layers were
separated and the aqueous layer was extracted two times with EtOAc.
The combined organic layers were dried with Na2SO4,
filtered, and concentrated. Column chromatography (SiO2,
hexane-EtOAc = 8:1 to 7:1 to
6:1) provided 0.180 g (66%) 4a as
a brownish oil.
Analytical Data for
tert
-Butyl 2-Amino-5-(2-methoxy-2-oxoethyl)thiophene-3-carboxylate
(4a)
¹H NMR (500 MHz, CDCl3): δ = 1.50 [s,
9 H, C(CH3)3], 3.56 (s, 2 H, CH2),
3.68 (s, 3 H, OCH3), 5.90 (br s, 2 H, NH2), 6.70
(s, 1 H, CH). ¹³C NMR (126 MHz, CDCl3): δ = 28.3 [q, C(CH3)3],
35.0 (t, CH2), 52.1 (q, OCH3), 79.9 [s, C(CH3)3], 107.6
(s, C-2), 115.4 (s, C-5), 125.4 (d, C-4), 162.0 (s, C-3), 164.7,
170.9 (2 s, CO). IR (film): 3445-3255 (NH), 3070-2845
(CH), 1740, 1670 (C=O), 1590, 1500, 1455 (NH, CSNH) cm-¹.
MS (EI, 80 eV, 60 ˚C): m/z (%) = 271
(14) [M]+, 215 (59) [M - C4H9]+,
197 (33) [M - C5H12]+,
156 (100) [M - C5H12O2]+,
138 (61), 57 (37) [C4H9]+.
HRMS (EI, 80 eV, 60 ˚C): m/z calcd
for C12H17NO4S: 271.0878; found: 271.0880.
Anal. calcd for C12H17NO4S (271.3):
C, 53.12; H, 6.32; N, 5.16; S, 11.82. Found: C, 53.37; H, 6.43;
N, 5.16; S, 11.95.
<A NAME="RG29408ST-10">10</A>
We also prepared thiophene 4a in 61% yield starting from commercially
available aldehyde 2a using a one-pot/one-stage
Gewald procedure (method A). Although the result is comparable with
the yield we achieved with cyclopropane 1a the
very high cost of aldehyde 2a (100 mg,
77 ı) is almost prohibitive for large-scale preparations
of 4a.
<A NAME="RG29408ST-11">11</A>
Reichelt I.
Reissig H.-U.
Liebigs Ann. Chem.
1984,
531
<A NAME="RG29408ST-12A">12a</A> For
a review on recent development of peptide coupling reagents in organic
synthesis, see:
Han S.-Y.
Kim Y.-A.
Tetrahedron
2004,
60:
2447
<A NAME="RG29408ST-12B">12b</A> For a review on chemical synthesis
of natural product peptides, see:
Humphrey JM.
Chamberlin AR.
Chem. Rev.
1997,
97:
2243
<A NAME="RG29408ST-13">13</A>
Greene TW.
Wuts PGM.
Protecting Groups in Organic Synthesis
4th
ed.:
Wiley;
New York:
2006.
<A NAME="RG29408ST-14">14</A>
Alternatively, 7c was
synthesized in 59% overall yield by a reversed reaction
sequence.
<A NAME="RG29408ST-15">15</A>
Knölker H.-J.
Braxmeier T.
Tetrahedron Lett.
1996,
37:
5861
<A NAME="RG29408ST-16">16</A>
Kruse CH.
Holden KG.
J. Org. Chem.
1985,
50:
2792
<A NAME="RG29408ST-17">17</A>
Carpino LA.
Han GY.
J. Org. Chem.
1972,
37:
3404
<A NAME="RG29408ST-18">18</A>
Burke TR.
Ye B.
Akamatsu M.
Ford H.
Yan X.
Kole HK.
Wolf G.
Shoelson SE.
Roller PP.
J. Med. Chem.
1996,
39:
1021
<A NAME="RG29408ST-19">19</A>
Mehta A.
Jaouhari R.
Benson TJ.
Douglas KT.
Tetrahedron Lett.
1992,
33:
5441
For reviews, see:
<A NAME="RG29408ST-20A">20a</A>
Hirschmann R.
Angew.
Chem. Int. Ed. Engl.
1991,
30:
1278 ; Angew. Chem. 1991, 103, 1305
<A NAME="RG29408ST-20B">20b</A>
Giannis A.
Kolter T.
Angew. Chem. Int. Ed. Engl.
1993,
32:
1244 ; Angew. Chem. 1993, 105, 1303
<A NAME="RG29408ST-21">21</A>
During peptide couplings presented
here we did not observe racemization of the amino acid moiety since
subsequent couplings with a second amino acid provided only one diastereomer.