RSS-Feed abonnieren
DOI: 10.1055/s-0028-1087517
Methylisoquinoline-Based Three-Component Condensation Reactions Involving Chromone-3-carboxaldehydes: One-Pot Synthesis of a New Class of Chromenopyridoisoquinolines
Publikationsverlauf
Publikationsdatum:
15. Januar 2009 (online)

Abstract
The synthesis of a new class of compounds, the chromenopyridoisoquinolines, in good yields by a one-pot three-component reaction of chromone-3-carboxaldehydes with the methylisoquinoline acetylenedicarboxylate zwitterion is described.
Key words
chromenopyridoisoquinolines - multicomponent reactions - isoquinoline - chromone-3-carboxaldehydes - acetylenedicarboxylate
- 1a
Acheson RM. Adv. Heterocycl. Chem. 1963, 1: 125Reference Ris Wihthout Link - 1b
Acheson RM.Elmore NF. Adv. Heterocycl. Chem. 1978, 23: 263Reference Ris Wihthout Link - 2
Huisgen R.Morikawa M.Herbig K.Brunn E. Chem. Ber. 1967, 100: 1094 - 3a
Valenciano J.Sanchez-Pavon E.Cuardo AM.Vaquero JJ.Alvarez-Builla J. J. Org. Chem. 2001, 66: 8528Reference Ris Wihthout Link - 3b
Dombrowski A.Nieger M.Niecke E. Chem. Commun. 1996, 1705Reference Ris Wihthout Link - 3c
Potts KT.Rochanapruk T.Coats SJ.Hadjiarapoglou L.Padwa A. J. Org. Chem. 1993, 58: 5040Reference Ris Wihthout Link - 3d
Potts KT.Dery MO. J. Org. Chem. 1990, 55: 2884Reference Ris Wihthout Link - 3e
Gotthardt H.Riegels M. Chem. Ber. 1988, 121: 1143Reference Ris Wihthout Link - 4a
Ungureanu I.Klotz P.Shoenfelder A.Mann A. Chem. Commun. 2001, 958Reference Ris Wihthout Link - 4b
Rigby JH. Synlett 2000, 1Reference Ris Wihthout Link - 4c
Tejeda J.Reau R.Dahan F.Bertrand G. J. Am. Chem. Soc. 1993, 115: 7880Reference Ris Wihthout Link - 4d
Facklam T.Wagner O.Heydt H.Regitz M. Angew. Chem. Int. Ed. 1990, 29: 314Reference Ris Wihthout Link - 5
Nair V.Menon RS.Sreekanth AR.Abhilash N.Biju AT. Acc. Chem. Res. 2006, 39: 520 - 6a
Nair V.Sreekanth AR.Vinod AU. Org. Lett. 2001, 3: 3495Reference Ris Wihthout Link - 6b
Nair V.Sreekanth AR.Vinod AU. Org. Lett. 2002, 4: 2807Reference Ris Wihthout Link - 7a
Nair V.Sreekanth AR.Abhilash N.Bhadbhade MM.Gonnade RC. Org. Lett. 2002, 4: 3575Reference Ris Wihthout Link - 7b
Nair V.Sreekanth AR.Biju AT.Rath NP. Tetrahedron Lett. 2003, 44: 729Reference Ris Wihthout Link - 7c
Nair V.Devi BR.Varma RL. Tetrahedron Lett. 2005, 46: 5333Reference Ris Wihthout Link - 7d
Yavari I.Hossaini Z.Sabbaghan M.Ghazanfarpour-Darjani M. Monatsh. Chem. 2007, 138: 677Reference Ris Wihthout Link - 8
Terzidis M.Tsoleridis CA.Stephanidou-Stephanatou J. Tetrahedron Lett. 2005, 46: 7239 - 9a
Dewick PM. In The Flavonoids: Advances in Research Since 1986Harborne JB. Chapman & Hall; New York: 1994. p.117Reference Ris Wihthout Link - 9b
Gill M. In The Chemistry of Natural Products 2nd ed.:Thomson RH. Blackie; Surrey: 1993. p.60-105Reference Ris Wihthout Link - 9c
Flavonoids
in the Living Systems: Advances in Experimental Medicine and Biology
Vol.
439:
Manthey JA.Buslig BS. Plenum; New York: 1998.Reference Ris Wihthout Link - 10a
Korkina GL.Afanas’ev IB. In Advances in Pharmacology Vol. 38:Sies H. Academic Press; San Diego: 1997. p.151-163Reference Ris Wihthout Link - 10b
Comprehensive
Medicinal Chemistry
Vol. 6:
Hansch C.Sammes PG.Taylor JB. Pergamon; New York: 1990.Reference Ris Wihthout Link - 11a
Balasubramanian M.Keay JG. In Comprehensive Heterocyclic Chemistry II Vol. 5:Katritzky AR.Rees CW.Scriven EFV. Pergamon Press; Oxford: 1996. p.245-300Reference Ris Wihthout Link - 11b
Catoen-Chackal S.Facompre M.Houssin R.Pommery N.Goossens J.-F.Colson P.Bailly C.Henichart J.-P. J. Med. Chem. 2004, 47: 3665Reference Ris Wihthout Link - 11c
Vázquez MT.Romero M.Pujol MD. Bioorg. Med. Chem. 2004, 12: 949Reference Ris Wihthout Link - 11d
Chen Y.-L.Chen I.-L.Lu C.-M.Tzeng C.-C.Tsao L.-T.Wang J.-P. Bioorg. Med. Chem. 2004, 12: 387Reference Ris Wihthout Link - 11e
Chen Y.-L.Fang K.-C.Sheu J.-Y.Hsu S.-L.Tzeng C.-C. J. Med. Chem. 2001, 44: 2374Reference Ris Wihthout Link - 12a
Gilchrist TL. In Heterocyclic Chemistry 3rd ed.: Addison-Wesley Longman; Essex: 1997. p.158-164Reference Ris Wihthout Link - 12b
Jones G. In Comprehensive Heterocyclic Chemistry Vol. 2:Katritzky AR.Rees CW. Pergamon; Oxford: 1984. p.395Reference Ris Wihthout Link - 12c
Jones G. In Comprehensive Heterocyclic Chemistry II Vol. 5:Katritzky AR.Rees CW.Scriven EFV. Pergamon Press; Oxford: 1996. p.167-243Reference Ris Wihthout Link - 13a
Kouznetsov VV.Vargas-Méndez LY.Meléndez-Gómez CM. Curr. Org. Chem. 2005, 9: 141Reference Ris Wihthout Link - 13b
Ishikawa T.Manabe S.Aikawa T.Kudo T.Saito S. Org. Lett. 2004, 6: 2361Reference Ris Wihthout Link - 13c
Sangu K.Fuchibe K.Akiyama T. Org. Lett. 2004, 6: 353Reference Ris Wihthout Link - 13d
Kobayashi K.Yoneda K.Miyamoto K.Morikawa O.Konishi H. Tetrahedron 2004, 60: 11639Reference Ris Wihthout Link - 13e
Wang J.Fan X.Zhang X.Han L. Can. J. Chem. 2004, 82: 1192Reference Ris Wihthout Link - 13f
Palimkar SS.Siddiqui SA.Daniel T.Lahoti RJ.Srinivasan KV. J. Org. Chem. 2003, 68: 9371Reference Ris Wihthout Link - 13g
Du W.Curran DP. Org. Lett. 2003, 5: 1765Reference Ris Wihthout Link - 13h
Jiang B.Si Y.-G. J. Org. Chem. 2002, 67: 9449Reference Ris Wihthout Link - 13i
Amii H.Kishikawa Y.Uneyama K. Org. Lett. 2001, 3: 1109Reference Ris Wihthout Link - 14a
Sabitha G. Aldrichimica Acta 1996, 29: 5 ; and references cited thereinReference Ris Wihthout Link - 14b
Ghosh C.Tewari N. J. Org. Chem. 1980, 45: 1964Reference Ris Wihthout Link - 14c
Kona J.Fabian WMF.Zahradnik P.
J. Chem. Soc., Perkin Trans. 2 2001, 422Reference Ris Wihthout Link - 14d
Kona J.Zahradnik P.Fabian WMF. J. Org. Chem. 2001, 66: 4998Reference Ris Wihthout Link - 15
Borrell JI.Teixido J.Schuler E.Michelotti E. Tetrahedron Lett. 2001, 42: 5331 - 16
Terzidis M.Tsoleridis CA.Stephanidou-Stephanatou J. Tetrahedron 2007, 63: 7828 - 19
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Montgomery JA.Vreven T.Kudin KN.Burant JC.Millam JM.Iyengar SS.Tomasi J.Barone V.Mennucci B.Cossi M.Scalmani G.Rega N.Peterson GA.Nakatsuji H.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Klene M.Li X.Knox JE.Hratchian HP.Cross JB.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Ayala PY.Morokuma K.Voth GA.Salvador P.Dannenberg JJ.Zakrzewski VG.Dapprich S.Daniels AD.Strain MC.Farkas O.Malick DK.Rabuck AD.Raghavachari K.Foresman JB.Ortiz JV.Cui Q.Baboul AG.Clifford S.Cioslowski J.Stefanov BB.Liu G.Liashenko A.Piskorz P.Komaromi I.Martin RL.Fox DJ.Keith T.Al-Laham MA.Peng CY.Nanayakkara A.Challacombe M.Gill PMW.Johnson B.Chen W.Wong MW.Gonzalez C.Pople JA. Gaussian 03 Rev. B.02: Gaussian, Inc.; Pittsburgh PA: 2003.Reference Ris Wihthout Link
References and Notes
All melting points were determined
on a Büchi apparatus and are uncorrected. The ¹H
NMR and ¹³C NMR spectra were recorded
on a Bruker AM300 spectrometer in CDCl3 with TMS as internal
standard. All coupling constants are given in Hz and chemical shifts
are given in ppm.
Typical Experimental
Procedure for the Preparation of 3a: DMAD (1.0 mmol) was added
to a stirred solution of chromone-3-carboxaldehyde 1a (1.0
mmol) and isoquinoline (1.0 mmol) in DME (20 mL) at r.t. and the reaction
mixture was stirred for 12 h. Distillation of the solvent in vacuo
followed by column chromatography using petroleum ether-EtOAc
(3:1) as eluent afforded the chromenopyridoisoquinoline 3a (Scheme
[¹]
).
Yield: 54%; yellow crystals; mp 206-207 ˚C
(EtOH). IR (KBr): 1728, 1704, 1665, 1607 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 1.82 (d, J = 0.8 Hz, 3 H, 6-Me), 3.85
(s, 3 H, 8-COOMe), 3.90 (s, 3 H, 9-COOMe), 5.14 (s, 1 H, 15b-H),
5.54 (s, 1 H, 9a-H), 5.71 (br s, 1 H, 5-H), 6.52 (br d, J = 7.9 Hz, 1 H,
1-H),
[¹8]
7.03 (ddd, J = 7.9, 7.6, 1.1 Hz, 1 H, 2-H),
7.04 (br d, J = 7.6 Hz, 1 H,
4-H), 7.04 (br d, J = 8.4 Hz,
1 H, 11-H), 7.11 (ddd, J = 7.9,
7.2, 1.0 Hz, 1 H, 13-H), 7.27 (td, J = 7.6,
1.0 Hz, 1 H, C-3), 7.56 (ddd, J = 8.4,
7.2, 1.7 Hz, 1 H, 12-H), 7.83 (ddd, J = 7.9,
1.7, 0.4 Hz, 1 H, 14-H), 9.97 (d, J = 0.4 Hz,
1 H, CHO). ¹³C NMR (75 MHz, CDCl3): δ = 20.7
(6-Me), 52.6 (9-Me), 53.3 (8-Me), 61.5 (C-15b), 68.6 (C-5a), 72.3
(C-9a), 108.7 (C-5), 118.3 (C-9), 118.4 (C-11), 121.1 (C-14a), 122.8
(C-13), 124.0 (C-4), 124.8 (C-15c), 125.8
(C-2), 127.2
(C-14), 128.5 (C-1), 129.2 (C-3), 131.1 (C-4a), 137.1 (C-12), 137.5
(C-6), 141.9 (C-8), 160.5 (C-10a), 164.9 (8-C=O), 166.1
(9-C=O), 186.1 (C=O), 197.3 (C=O). MS (LCMS): m/z (%) = 460
(100) [M+ + 1]. Anal.
Calcd for C26H21NO7 (459.45): C,
67.97; H, 4.61; N, 3.05. Found: C, 67.86; H, 4.73; N, 2.98.
The multiplicities and chemical shifts
of the aromatic protons have been confirmed after simulation with
program SpinWorks, version 2.2.0, available from
ftp://davinci.chem.umanitoba.ca.