References and Notes
<A NAME="RD40208ST-1">1</A>
Nerurkar SG.
Dighe SV.
Williams RL.
J. Clin. Pharmacol.
1992,
32:
935
<A NAME="RD40208ST-2A">2a</A>
Sonawane HR.
Bellur NS.
Ahuja JR.
Kulkarni
DG.
Tetrahedron: Asymmetry
1992,
3:
163
<A NAME="RD40208ST-2B">2b</A>
Fuji K.
Node M.
Tanaka F.
Hosoi S.
Tetrahedron Lett.
1989,
30:
2825
<A NAME="RD40208ST-2C">2c</A>
Corriu JP.
Masse JP.
J.
Chem. Soc., Chem. Commun.
1972,
144
<A NAME="RD40208ST-2D">2d</A>
Tamao K.
Sumitani K.
Kumada M.
J.
Am. Chem. Soc.
1972,
94:
4374
<A NAME="RD40208ST-2E">2e</A>
Hayashi T.
Konishi M.
Fukushima M.
Kanehira K.
Hioki T.
Kumada M.
J. Org. Chem.
1983,
48:
2195
<A NAME="RD40208ST-2F">2f</A>
Larsen
RD.
Corley EG.
Davis P.
Reider PJ.
Grabowski
EJJ.
J. Am. Chem.
Soc.
1989,
111:
7650
<A NAME="RD40208ST-2G">2g</A>
Alper H.
Hamel N.
J. Am. Chem. Soc.
1990,
112:
2803
<A NAME="RD40208ST-2H">2h</A>
Ohta T.
Takaya H.
Kitamura M.
Nagai K.
Noyori R.
J.
Org. Chem.
1987,
52:
3174
For reviews, see:
<A NAME="RD40208ST-3A">3a</A>
Eames J.
Angew.
Chem. Int Ed.
2000,
39:
885
<A NAME="RD40208ST-3B">3b</A>
Eames J. In Organic Synthesis Highlights
Vol. 5:
Wiley-VCH;
Weinheim:
2003.
Chap.
17.
p.151
<A NAME="RD40208ST-3C">3c</A>
Dehli JR.
Gotor V.
Chem. Soc.
Rev.
2002,
31:
365
<A NAME="RD40208ST-3D">3d</A>
Dehli
JR.
Gotor V.
ARKIVOC
2002,
(v):
196
<A NAME="RD40208ST-4A">4a</A>
Coumbarides GS.
Dingjan M.
Eames J.
Flinn A.
Motevalli M.
Northen J.
Yohannes Y.
Synlett
2006,
101
<A NAME="RD40208ST-4B">4b</A>
Boyd E.
Chavda S.
Eames J.
Yohannes Y.
Tetrahedron: Asymmetry
2007,
18:
476
<A NAME="RD40208ST-5A">5a</A>
Coumbarides GS.
Dingjan M.
Eames J.
Flinn A.
Northen J.
Yohannes Y.
Tetrahedron
Lett.
2005,
46:
2897
<A NAME="RD40208ST-5B">5b</A>
Yohannes Y.
PhD
Thesis
University of London;
UK:
2004.
<A NAME="RD40208ST-6">6</A>
Chavda S.
Coulbeck E.
Dingjan M.
Eames J.
Flinn A.
Northen J.
Tetrahedron: Asymmetry
2008,
19:
1536
<A NAME="RD40208ST-7A">7a</A>
Delaunay D.
Toupet L.
Corre ML.
J. Org. Chem.
1995,
60:
6604
<A NAME="RD40208ST-7B">7b</A>
Wu Y.
Yang Y.-Q.
Hu Q.
J.
Org. Chem.
2004,
69:
3990
<A NAME="RD40208ST-8">8</A>
The relative configuration of this
adduct was determined through stereospecific synthesis.
<A NAME="RD40208ST-9">9</A>
For oxazolidin-2-thione (S,S)-anti-5, the
PhCHN double doublet appeared at δ = 5.51 ppm
(1 H, dd, J = 8.3,
3.0 Hz). Whereas, for oxazolidin-2-thiones (R,S)-syn-5, the PhCHN double doublet appeared at δ = 5.62
ppm (1 H, dd, J = 9.2, 6.1
Hz).
<A NAME="RD40208ST-10">10</A>
Eames J.
Chavda S.
Coumbarides GS.
Dingjan M.
Flinn A.
Northen J.
Chirality
2007,
19:
313
<A NAME="RD40208ST-11">11</A>
Boyd E.
Chavda S.
Coulbeck E.
Coumbarides GS.
Dingjan M.
Eames J.
Flinn A.
Motevalli M.
Northen J.
Yohannes Y.
Tetrahedron: Asymmetry
2007,
18:
2515
<A NAME="RD40208ST-12">12</A>
The ee was determined through hydrolysis
of the active ester and derivatization of the parent 2-phenylpropionic
acid. For further information, see ref. 15.
<A NAME="RD40208ST-13">13</A>
For the mutual kinetic resolution
of active ester (rac)-2 with 4-phenyloxazolidin-2-thione
(rac)-4, gave
the corresponding (RS,SR)-(rac)-syn-5 in 55% yield with 96% de. For further information, see ref. 6.
<A NAME="RD40208ST-14">14</A>
This lower diastereocontrol was not
due to in situ racemization of active ester (rac)-15 nor epimerization of the resulting oxazolidin-2-thione
(R,S)-syn-16 as this
adduct can be made stereospecifically by addition of (R)-15 to the lithiated
4-phenyloxazolidin-2-thione (S)-4-Li.
<A NAME="RD40208ST-15">15</A>
The ee was determined by derivatisation
with (R)-1-phenylethanol using a DMAP-mediated
DCC coupling procedure.
<A NAME="RD40208ST-16">16</A>
Representative
Experimental Procedure:(2
R
,4
S
)-3-(2-Phenylpropionyl)-4-phenyloxazolidin-2-thione [(
R
,
S
)-
syn
-5]
n-Butyllithium (0.36 mL, 2.5 M in hexane,
0.90 mmol) was added to a stirred solution of 4-phenyloxazolidin-2-thione (S)-
4 (0.15 g, 0.84 mmol) in THF (5 mL) at -78 ˚C.
After stirring for 1 h, a solution of pentafluorophenyl 2-phenyl-propionate [(rac)-2, 0.26
g, 0.84 mmol] in THF (1 mL) was added. The resulting mixture
was stirred for 2 h at -78 ˚C. The reaction
was quenched with H2O (10 mL). The organic layer was
extracted with CH2Cl2 (2 × 10 mL),
dried (MgSO4), and evaporated under reduced pressure
to give a mixture of diastereomeric oxazolidin-2-thiones syn-5 and anti-5 (ratio
94:6 syn/anti).
The crude residue was purified by flash chromatography on SiO2 eluting
with light PE (bp 40-60 ˚C)-Et2O
(7:3) to give the oxazolidin-2-thione (R,S)-syn-5 (77 mg, 30%) as a white solid
and the pentafluoro-phenyl 2-phenylpropionate (S)-2 (0.123 g, 47%) as a colorless
liquid.
Oxazolidin-2-thione (R,S)-syn-5: R
f
= 0.67 [light
PE (bp
40-60 ˚C)-Et2O,
1:1]; mp 87-89 ˚C [lit.6 (S,R) 84-86 ˚C]; [α]D
²0 +66.1
(c 3.6, CHCl3) [lit.
(S,R) [α]D
²0 -58.3
(c 4.0, CHCl3)].
IR (CHCl3): νmax = 1708
(C=O), 1216 (C=S) cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.20-7.08
(6 H, m, 6 × CH, PhA and PhB), 6.94
(2 H, dt, J = 6.9, 1.8 Hz, 2 × CH,
PhA), 6.88 (2 H, dt, J = 7.0,
1.8 Hz, 2 × CH, PhB), 5.98 (1 H, q, J = 6.9 Hz, PhCHCH3),
5.62 (1 H, dd, J = 9.2, 6.1
Hz, PhCHN), 4.68 (1 H, t, J = 9.2
Hz, CH
AHBO), 4.20
(1 H, dd, J = 9.2, 6.1 Hz, CHA
H
BO), 1.35 (3 H, d, J = 6.9 Hz, PhCHCH
3).
¹³C
NMR (100 MHz, CDCl3): 185.2 (C=S), 174.8 (C=O), 139.1
and 136.9 (2 × i-C; 2 × Ph),
128.8,² 128.7,¹ 128.5,² 128.3,² 127.1¹ and
126.4² (10 × CH, 2 × Ph),
73.6 (CH2O), 62.6 (PhCHN), 43.9 (PhCHCH3),
18.7 (PhCHCH3). HRMS: m/z calcd for C18H18NO2S [MH+]:
312.1053; found: 312.1054.
Pentafluorophenyl 2-phenylpropionate
(S)-2: R
f
= 0.63 [light PE
(40-60 ˚C)-Et2O, 9:1]; [α]D
²0 +40.8
(c 4.6, CHCl3) {ca. 55% ee
based on lit.¹0 (S) [α]D
²0 +74.5
(c 4.9, CHCl3); lit.¹¹ (R) [α]D
²0 -75.0
(c 3.3, CHCl3)}.
IR (film): νmax = 1784 (C=O)
cm-¹. ¹H NMR (400
MHz, CDCl3): δ = 7.41-7.28
(5 H, m, 5 × CH, Ph), 4.07 (1 H, q, J = 7.2
Hz, CH3CH), 1.64 (3 H, d, J = 7.2 Hz, CH
3CH). ¹³C
NMR (100 MHz, CDCl3): δ = 170.6 (OC=O),
141.1 [142.40 and 139.90, 2 C, ddt, ¹
J
C,F = 251.3
Hz, ²
J
C,F = 12.2
Hz, ³
J
C,F = 3.8
Hz, C(2)-F], 139.4 [140.70 and 138.18, 1 C, dtt, ¹
J
C,F = 253.2
Hz, ²
J
C,F = 13.4
Hz, ³
J
C,F = 4.2
Hz, C(4)-F], 138.7 (i-C, Ph), 137.8 [139.05
and 136.58, 2 C, dtdd, ¹
J
C,F = 249.1
Hz, ²
J
C,F = 14.5
Hz, ³
J
C,F = 5.7
Hz, 4
J
C,F = 3.1
Hz, C(3)-F], 128.9, 127.8, 127.5 (3 × CH, Ar),
125.2 (1 C, tdt, ²
J
C,F = 14.2 Hz, 4
J
C,F = 4.2
Hz, ³
J
C,F = 2.0
Hz, i-CO, OC6F5),
45.1 (PhCH), 18.5 (CH3CH). ¹9F
NMR (378 MHz, CDCl3):
δ = -152.6
(2 F, d,
³
J
F,F = 20.9 Hz, F
ortho
), -157.9 (1 F, t,
³
J
F,F = 20.9 Hz, F
para
), -162.3 (2 F, t, ³
J
F,F = 20.9 Hz, F
meta
). HRMS: m/z calcd
for C15H9F5O2 [M+]:
316.0517; found: 316.0514.