Int J Sports Med 2009; 30(6): 430-434
DOI: 10.1055/s-0028-1112145
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Physical Training Leads to Remodeling of Diaphragm Muscle in Asthma Model

J. L. Q. Durigan 1 , S. M. Peviani 1 , T. L. Russo 1 , A. C. Duarte 2 , R. P. Vieira 2 , M. A. Martins 3 , C. R. F. Carvalho 2 , T. F. Salvini 1
  • 1Department of Physical Therapy, Federal University of São Carlos, Sao Carlos, Brazil
  • 2Department of Physical Therapy, University of São Paulo, Sao Paulo, Brazil
  • 3Department of Medicine, University of São Paulo, Sao Paulo, Brazil
Further Information

Publication History

accepted after revision November 16, 2008

Publication Date:
06 February 2009 (online)

Abstract

Matrix metalloproteinases (MMPs) are crucial to the development and maintenance of healthy tissue and are mainly involved in extracellular matrix (ECM) remodeling of skeletal muscle. This study evaluated the effects of chronic allergic airway inflammation (CAAI), induced by ovalbumin, and aerobic training in the MMPs activity in mouse diaphragm muscle. Thirty mice were divided into 6 groups: 1) control; 2) ovalbumin; 3) treadmill trained at 50% of maximum speed; 4) ovalbumin and trained at 50%; 5) trained at 75%; 6) ovalbumin and trained at 75%. CAAI did not alter MMPs activities in diaphragm muscle. Nevertheless, both treadmill aerobic trainings, associated with CAAI increased the MMP-2 and -1 activities. Furthermore, MMP-9 was not detected in any group. Together, these findings suggest an ECM remodeling in diaphragm muscle of asthmatic mice submitted to physical training. This result may be useful for a better understanding of functional significance of changes in the MMPs activity in response to physical training in asthma.

References

  • 1 Carmeli E, Moas M, Reznick AZ, Coleman R. Matrix metalloproteinases and skeletal muscle: a brief review.  Muscle Nerve. 2004;  29 191-197
  • 2 Carmeli E, Moas M, Lennon S, Powers SK. High intensity exercise increases expression of matrix metalloproteinases in fast skeletal muscle fibres.  Exp Physiol. 2005;  90 613-619
  • 3 Carvalho RF, Dariolli R, Justulin Junior LA, Sugizaki MM, Politi Okoshi M, Cicogna AC, Felisbino SL, Dal Pai-Silva M. Heart failure alters matrix metalloproteinase gene expression and activity in rat skeletal muscle.  Int J Exp Pathol. 2006;  87 437-443
  • 4 Cormier Y, Lecours R, Legris C. Mechanisms of hyperinflation in asthma.  Eur Respir J. 1990;  3 619-624
  • 5 Counil FP, Varray A, Matecki S, Beurey A, Marchal P, Voisin M, Préfaut C. Training of aerobic and anaerobic fitness in children with asthma.  J Pediatr. 2003;  142 179-184
  • 6 Counil FP, Voisin M. Physical fitness in children with asthma.  Arch Pediatr. 2006;  13 1136-1141
  • 7 Durigan JLQ, Peviani SM, Russo TL, Delfino GB, Ribeiro JU, Cominetti MR, Selistre-de-Araujo HS, Salvini TF. Effects of Alternagin-C from bothrops alternatus on gene expression and activity of metalloproteinases in regenerating skeletal muscle.  Toxicon. 2008;  52 687-694
  • 8 Fanelli A, Cabral ALB, Neder JA, Martins MA, Carvalho CRF. Exercise training on disease control and quality of life in asthmatic children.  Med Sci Sports Exerc. 2007;  39 1474-1480
  • 9 Garrod R, Lasserson T. Role of physiotherapy in the management of chronic lung diseases: An overview of systematic reviews.  Respir Med. 2007;  101 2429-2436
  • 10 Gueders MM, Foidart JM, Noel A, Cataldo DD. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases.  Eur J Pharmacol. 2006;  533 133-144
  • 11 , Guide for care and use of laboratory animals (NIH publication 85-23, revised 1985)
  • 12 Hallstrand TS, Bates PW, Schoene RB. Aerobic conditioning in mild asthma decreases the hyperpnea of exercise and improves exercise and ventilatory capacity.  Chest. 2000;  118 1460-1469
  • 13 Kherif S, Dehaupas M, Lafuma C, Fardeau M, Alameddine HS. Matrix metalloproteinases MMP-2 and MMP-9 in denervated muscle and injured nerve.  Neuropathol Appl Neurobiol. 1998;  24 309-319
  • 14 Koskinen SO, Wang W, Ahtikoski AM, Kjaer M, Han XY, Komulainen J, Kovanen V, Takala TE. Acute exercise induced changes in rat skeletal muscle mRNAs and proteins regulating type IV collagen content.  Am J Physiol. 2001;  280 R1292-300
  • 15 Kumagai K, Ohno I, Okada S, Ohkawara Y, Suzuki K, Shinya T, Nagase H, Iwata K, Shirato K. Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma.  J Immunol. 1999;  162 4212-4219
  • 16 Marqueti RC, Prestes J, Stotzer US, Paschoal M, Leite RD, Perez SE, Selistre de Araujo HS. MMP-2, Jumping exercise and nandrolone in skeletal muscle.  Int J Sports Med. 2008;  29 559-563
  • 17 MacCawley LJ, Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol.  2001;  13 534-540
  • 18 MacConnell AK. The role of inspiratory muscle function and training in the genesis of dyspnoea in asthma and COPD.  Prim Care Respir J. 2005;  14 186-194
  • 19 O'Donnell DE, Laveneziana P. Dyspnea and activity limitation in COPD: mechanical factors.  COPD. 2007;  4 225-236
  • 20 Okada S, Kita H, George TJ, Gleich GJ, Leiferman KM. Migration of eosinophil through basement membrane components in vitro: role of matrix metalloproteinase-9.  Am J Respir Cell Mol Biol. 1997;  17 519-528
  • 21 Ottenheijm CAC, Heunks LMA, Dekhuijzen RPN. Diaphragm adaptations in patients with COPD.  Respir Res. 2008;  24 9-12
  • 22 Paulin E, Yamaguti WP, Chammas MC, Shibao S, Stelmach R, Cukier A, Carvalho CR. Influence of diaphragmatic mobility on exercise tolerance and dyspnea in patients with COPD.  Respir Med. 2007;  101 2113-2118
  • 23 Russo TL, Peviani SM, Durigan JL, Salvini TF. Electrical stimulation increases matrix metalloproteinase-2 gene expression but does not change its activity in denervated rat muscle.  Muscle Nerve. 2008;  37 593-600
  • 24 Schiotz Thorud HM, Stranda A, Birkeland JA, Lunde PK, Sjaastad I, Kolset SO, Sejersted OM, Iversen PO. Enhanced matrix metalloproteinase activity in skeletal muscles of rats with congestive heart failure.  Am J Physiol. 2005;  289 R389-R394
  • 25 Sinderby C, Spahija J, Beck J, Kaminski D, Yan S, Comtois N, Sliwinski P. Diaphragm activation during exercise in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2001;  163 1637-1641
  • 26 Travaline JM, Sudarshan S, Roy BG, Cordova F, Leyenson V, Criner GJ. Effect of N-acetylcysteine on human diaphragm strength and fatigability.  Am J Respir Crit Care Med. 1997;  156 1567-1571
  • 27 Vassilakopoulos T, Divangahi M, Rallis G, Kishta O, Petrof B, Comtois A, Hussain SN. Differential cytokine gene expression in the diaphragm in response to strenuous resistive breathing.  Am J Respir Crit Care Med. 2004;  170 154-161
  • 28 Vieira RP, Claudino RC, Duarte ACS, Santos ABG, Perini A, Faria-Neto HCC, Mauad T, Martins MA, Dolhnikoff M, Carvalho CRF. Aerobic exercise decreases chronic allergic lung inflammation and airway remodeling in mice.  Am J Respir Crit Care Med. 2007;  176 871-877
  • 29 Vieira RP, de Andrade VF, Duarte AC, Dos Santos AB, Mauad T, Martins MA, Dolhnikoff M, Carvalho CR. Aerobic conditioning and allergic pulmonary inflammation in mice II: Effects on lung vascular and parenchymal inflammation and remodeling.  Am J Physiol Lung Cell Mol Physiol. 2008;  295 670-679
  • 30 Xisto DG, Farias LL, Ferreira HC, Picanço MR, Amitrano D, Lapa E Silva JR, Negri EM, Mauad T, Carnielli D, Silva LF, Capelozzi VL, Faffe DS, Zin WA, Rocco PR. Lung parenchyma remodeling in a murine model of chronic allergic inflammation.  Am J Respir Crit Care Med. 2005;  171 829-837

Correspondence

Prof. J. L. Q. DuriganPhD 

Department of Physical Therapy

Federal University of São Carlos

Rodovia Washington Luís

Km 235

CEP 13565-905

13565-905 Sao Carlos

Brazil

Phone: +55/16/3351 83 45

Fax: +55/16/3351 20 81

Email: joaodurigan@gmail.com

    >