Int J Sports Med 2009; 30(6): 448-454
DOI: 10.1055/s-0028-1119404
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Investigations of the Lactate Minimum Test

M. A. Johnson 1 , G. R. Sharpe 1 , P. I. Brown 1
  • 1School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
Further Information

Publication History

accepted after revision December 5, 2008

Publication Date:
06 February 2009 (online)

Abstract

We evaluated: the agreement between lactate minimum and maximal lactate steady state (MLSS) cycling powers (study 1); whether rates of change of blood lactate concentration during the lactate minimum test reflect that of constant power exercise (study 2); whether the lactate minimum power is influenced by the muscle groups used to elevate blood lactate concentration (study 3). Study 1: 32 subjects performed a lactate minimum test comprising a lactate elevation phase, recovery phase, and incremental phase (five 4 min stages); MLSS was subsequently determined. Study 2: 8 subjects performed a lactate minimum test and five 22 min constant power tests at the incremental phase exercise intensities. Study 3: 10 subjects performed two identical lactate minimum tests, except during the second test the lactate elevation phase comprised arm-cranking. Lactate minimum and MLSS powers demonstrated good agreement (mean bias±95% limits of agreement: 2±22 W). Rates of change of blood lactate concentration during each incremental phase stage and corresponding constant power test did not correlate. Lactate minimum power was lowered when arm-cranking was used during the lactate elevation phase (157±29 vs. 168±21 W; p<0.05). The lactate elevation phase modifies blood lactate concentration responses during the incremental phase, thus good agreement between lactate minimum and MLSS powers seems fortuitous.

References

  • 1 Atkinson G, Davison RCR, Nevill AM. Performance characteristics of gas analysis systems: what we know and what we need to know.  Int J Sports Med. 2005;  26 2-10
  • 2 Aunola S, Rusko H. Does anaerobic threshold correlate with maximal lactate steady state?.  J Sports Sci. 1992;  10 309-323
  • 3 Bacon L, Kern M. Evaluating a test protocol for predicting maximum lactate steady state.  J Sports Med Phys Fitness. 1999;  39 300-308
  • 4 Baldari C, Guidetti L. A simple method for individual anaerobic threshold as predictor of max lactate steady state.  Med Sci Sports Exerc. 2000;  32 1798-1802
  • 5 Bangsbo J, Krustrup P, González-Alonso J, Saltin B. ATP production and efficiency of human skeletal muscle during intense exercise: effect of previous exercise.  Am J Physiol Endocrinol Metab. 2001;  280 956-964
  • 6 Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing.  Med Sci Sports Exerc. 1995;  27 863-867
  • 7 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement.  Lancet. 1986;  1 307-310
  • 8 Bohnert B, Ward SA, Whipp BJ. Effects of prior arm exercise on pulmonary gas exchange kinetics during high-intensity leg exercise in humans.  Exp Physiol. 1998;  83 557-570
  • 9 Brooks GA. Intra- and extra-cellular lactate shuttles.  Med Sci Sports Exerc. 2000;  32 790-799
  • 10 Campbell-O’Sullivan SP, Constantin-Teodosiu D, Peirce N, Greenhaff PL. Low intensity exercise in humans accelerates mitochondrial ATP production and pulmonary oxygen kinetics during subsequent more intense exercise.  J Physiol. 2002;  538 931-939
  • 11 Davis HA, Gass GC. Blood lactate concentrations during incremental work before and after maximum exercise.  Br J Sports Med. 1979;  13 165-169
  • 12 Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P. Maximal lactate steady state, respiratory compensation threshold and critical power.  Eur J Appl Physiol. 2003;  89 281-288
  • 13 Denadai BS, Higino WP. Effect of the passive recovery period on the lactate minimum speed in sprinters and endurance runners.  J Sci Med Sport. 2004;  7 488-496
  • 14 Fukuba Y, Hayashi N, Koga S, Yoshida Y. VO2 kinetics in heavy exercise is not altered by prior exercise with a different muscle group.  J Appl Physiol. 2002;  92 2467-2474
  • 15 Gurd BJ, Peters SJ, Heigenhauser GJF, LeBlanc PJ, Doherty TJ, Paterson DH, Kowalchuk JM. Prior heavy exercise elevates pyruvate dehydrogenase activity and speeds O2 uptake kinetics during subsequent moderate-intensity exercise in healthy young adults.  J Physiol. 2006;  577 985-996
  • 16 Johnson MA, Sharpe GR, MacConnell AK. Maximal voluntary hyperpnoea increases blood lactate concentration during exercise.  Eur J Appl Physiol. 2006;  96 600-608
  • 17 Jones AM, Doust JH. The validity of the lactate minimum test for determination of the maximal lactate steady state.  Med Sci Sports Exerc. 1998;  30 1304-1313
  • 18 Kilding AE, Jones AM. Validity of a single-visit protocol to estimate the maximum lactate steady state.  Med Sci Sports Exerc. 2005;  37 1734-1740
  • 19 Koppo K, Jones AM, Bouckaert J. Effect of prior heavy arm and leg exercise on VO2 kinetics during heavy leg exercise.  Eur J Appl Physiol. 2003;  88 593-600
  • 20 Laplaud D, Guinot M, Favre-Juvin A, Flore P. Maximal lactate steady state determination with a single incremental test exercise.  Eur J Appl Physiol. 2006;  96 446-452
  • 21 MacIntosh BR, Esau S, Svedahl K. The lactate minimum test for cycling: estimation of the maximal lactate steady state.  Can J Appl Physiol. 2002;  27 232-249
  • 22 MacLoughlin P, Popham P, Linton RAF, Bruce RCH, Band DM. Use of arterialised venous blood sampling during incremental exercise tests.  J Appl Physiol. 1992;  73 937-940
  • 23 Ribeiro L, Balikian P, Malachias P, Baldissera V. Stage length, spline function and lactate minimum swimming speed.  J Sports Med Phys Fitness. 2003;  43 312-318
  • 24 Simões HG, Denadai BS, Baldissera V, Campbell CSG, Hill DW. Relationships and significance of lactate minimum, critical velocity, heart rate deflection and 3 000 m track-tests for running.  J Sports Med Phys Fitness. 2005;  45 441-451
  • 25 Smith CGM, Jones AM. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners.  Eur J Appl Physiol. 2001;  85 19-26
  • 26 Smith MF, Balmer J, Coleman DA, Bird SR, Davison RCR. Method of lactate elevation does not affect the determination of the lactate minimum.  Med Sci Sports Exerc. 2002;  34 1744-1749
  • 27 Svedahl K, MacIntosh BR. Anaerobic threshold: the concept and methods of measurement.  Can J Appl Physiol. 2003;  28 299-323
  • 28 Tegtbur U, Busse MW, Braumann KM. Estimation of an individual equilibrium between lactate production and catabolism during exercise.  Med Sci Sports Exerc. 1993;  25 620-627
  • 29 Urhausen A, Coen B, Weiler B, Kindermann W. Individual anaerobic threshold and maximum lactate steady state.  Int J Sports Med. 1993;  14 134-139

Correspondence

Dr. M. A. Johnson

School of Science and Technology

Nottingham Trent University

Clifton Campus

Nottingham

United Kingdom

NG11 8NS

Phone: +44/115/848 33 62

Fax: +44/115/848 66 36

Email: michael.johnson@ntu.ac.uk

    >