Subscribe to RSS
DOI: 10.1055/s-0028-1123996
© Georg Thieme Verlag KG Stuttgart · New York
Mechanismen und Möglichkeiten einer therapeutischen Stimulation der Arteriogenese
Mechanisms and potential of the therapeutic stimulation of arteriogenesisPublication History
eingereicht: 6.7.2008
akzeptiert: 15.1.2009
Publication Date:
05 February 2009 (online)

Zusammenfassung
Die Stimulation des Kollateralarterienwachstums (Arteriogenese) ist eine vielversprechende Alternative zur nichtinvasiven Behandlung stenosierender arterieller Gefäßkrankheiten wie der koronaren Herzkrankheit, der peripheren oder zerebralen arteriellen Verschlusskrankheit. Patienten, die einem klassischen Revaskularisationsverfahren nicht mehr erfolgreich zugeführt werden können, könnten von der Stimulation der adaptiven Arteriogenese profitieren. Die zu Grunde liegenden Mechanismen sind experimentell gut belegt. Hierzu gehören eine Erhöhung der Scherkraft bei Stenose einer größeren Arterie, Adhäsion, Transmigration und perivaskuläre Akkumulation von Monozyten um die kollateralarterielle Arteriole, Wachstumsfaktorsezernierung und Proliferation von Endothel- und glatten Gefäßmuskelzellen. Die therapeutische Stimulation der Arteriogenese durch Zytokine gelingt im experimentellen Modell bereits sehr gut. An der Umsetzung der Erkenntnisse in die klinische Praxis muss noch gearbeitet werden. Problematisch sind die biologisch-anatomischen Unterschiede zwischen dem gesundem Versuchstier und dem oft multimorbiden Patienten, mögliche schädliche Wirkungen einer pro-arteriogenen Therapie sowie die Verwendung geeigneter klinischer Endpunkte zur exakten Quantifizierung des Kollateralarterienwachstums. Erste Untersuchungen der humanen Arteriogenese zeigen große interindividuelle Unterschiede und weisen auf eine Bedeutung anti-arteriogener Mechanismen bei Patienten mit hohem kardiovaskulärem Risiko.
Summary
The stimulation of collateral artery growth (arteriogenesis) is a promising alternative approach to non-invasively treat arterial obstructive disease, such as coronary, peripheral or cerebral artery disease. Patients unable to undergo conventional revascularization strategies may benefit from adaptive arteriogenesis. Underlying mechanisms are experimentally validated and include an increase in shear stress after obstruction or occlusion of a major artery; monocyte adhesion, transmigration and perivascular accumulation, secretion of growth factors; and smooth muscle and endothelial cell proliferation and growth of pre-existent collateral arteries. Therapeutic stimulation of arteriogenesis with cytokines has been successfully performed in experimental models. Translation into clinical practice, however, has hitherto been problematic. Reasons for this include differences between the healthy laboratory animal and an often severely diseased patient, possible harmful effects of pro-arteriogenic therapies and unsuitable clinical endpoints for the detection of collateral artery growth. Recent investigations of human arteriogenesis demonstrate significant inter-individual differences and point towards the importance of anti-arteriogenic mechanisms in patients with impaired adaptive arteriogenesis and high cardiovascular risk factors.
Schlüsselwörter
Arteriogenese - Kollateralarterienwachstum - Angiogenese - Monozyten - Koronare Herzkrankheit - Atherosklerose
Keywords
arteriogenesis - collateral artery growth - monocytes - coronary artery disease - vascular biology - cytokines
Literatur
- 1
Bergmann C E, Hoefer I E, Meder B. et al .
Arteriogenesis depends on
circulating monocytes and macrophage accumulation and is severely
depressed in op/op mice.
J Leukoc Biol.
2006;
80
59-65
MissingFormLabel
- 2
Bondke A, Hillmeister P, Buschmann I R.
Exact assessment of perfusion and collateral vessel proliferation
in small animal models.
Circ Res.
2007;
100
e82-83
MissingFormLabel
- 3
Buschmann I R, Busch H J, Mies G, Hossmann K A.
Therapeutic
induction of arteriogenesis in hypoperfused rat brain via granulocyte-macrophage
colony-stimulating factor.
Circulation.
2003;
108
610-615
MissingFormLabel
- 4
Cai W, Vosschulte R, Afsah-Hedjri A. et al .
Altered balance between extracellular proteolysis
and antiproteolysis is associated with adaptive coronary arteriogenesis.
J Mol Cell Cardiol.
2000;
32
997-1011
MissingFormLabel
- 5
Eitenmuller I, Volger O, Kluge A. et al .
The range of adaptation by collateral vessels
after femoral artery occlusion.
Circ Res.
2006;
99
656-662
MissingFormLabel
- 6
Epstein S E, Stabile E, Kinnaird T, Lee C W, Clavijo L, Burnett M S.
Janus phenomenon:
the interrelated tradeoffs inherent in therapies designed to enhance
collateral formation and those designed to inhibit atherogenesis.
Circulation.
2004;
109
2826-2831
MissingFormLabel
- 7
Erbs S, Linke A, Schachinger V. et al .
Restoration of microvascular function in
the infarct-related artery by intracoronary transplantation of bone
marrow progenitor cells in patients with acute myocardial infarction:
the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells
and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI)
trial.
Circulation.
2007;
116
366-374
MissingFormLabel
- 8
Gray C, Packham I M, Wurmser F. et al .
Ischemia Is Not Required for Arteriogenesis
in Zebrafish Embryos.
Arterioscler Thromb Vasc Biol.
2007;
27
2135-2141
MissingFormLabel
- 9
Grines C L, Watkins M W, Helmer G. et al .
Angiogenic Gene Therapy (AGENT) trial in
patients with stable angina pectoris.
Circulation.
2002;
105
1291-1297
MissingFormLabel
- 10
Grundmann S, van Royen N, Pasterkamp G. et al .
A New Intra-Arterial DeliveryPlatform for
Pro-Arteriogenic Compounds to Stimulate Collateral Artery Growth
Via Transforming Growth Factor-[beta]1 Release.
J Am Coll Cardiol.
2007;
50
351-358
MissingFormLabel
- 11
Heil M, Clauss M, Suzuki K. et
al .
Vascular endothelial growth factor (VEGF) stimulates
monocyte migration through endothelial monolayers via increased
integrin expression.
Eur J Cell Biol.
2000;
79
850-857
MissingFormLabel
- 12
Helisch A, Wagner S, Khan N. et
al .
Impact of mouse strain differences in innate hindlimb
collateral vasculature.
Arterioscler Thromb Vasc Biol.
2006;
26
520-526
MissingFormLabel
- 13
Henry T D, Annex B H, McKendall G R. et al .
The VIVA Trial: Vascular
Endothelial Growth Factor in Ischemia for Vascular Angiogenesis.
Circulation.
2003;
107
1359-1365
MissingFormLabel
- 14
Hoefer I E, Grundmann S, van Royen N. et al .
Leukocyte subpopulations and arteriogenesis:
specific role of monocytes, lymphocytes and granulocytes.
Atherosclerosis.
2005;
181
285-293
MissingFormLabel
- 15
Hoefer I E, van Royen N, Rectenwald J E. et al .
Arteriogenesis proceeds via
ICAM-1/Mac-1- mediated mechanisms.
Circ Res.
2004;
94
1179-1185
MissingFormLabel
- 16
Isner J M, Pieczek A, Schainfeld R. et al .
Clinical evidence of angiogenesis after
arterial gene transfer of phVEGF165 in patient with ischaemic limb.
Lancet.
1996;
348
370-374
MissingFormLabel
- 17
Ito W D, Arras M, Scholz D, Winkler B, Htun P, Schaper W.
Angiogenesis but not collateral growth is
associated with ischemia after femoral artery occlusion.
Am
J Physiol Heart Circ Physiol.
1997;
273
H1255-1265
MissingFormLabel
- 18
Ito W D, Arras M, Winkler B, Scholz D, Schaper J, Schaper W.
Monocyte chemotactic
protein-1 increases collateral and peripheral conductance after
femoral artery occlusion.
Circ Res.
1997;
80
829
MissingFormLabel
- 19
Kinnaird T, Stabile E, Burnett M S. et al .
Marrow-derived stromal cells express genes
encoding a broad spectrum of arteriogenic cytokines and promote
in vitro and in vivo arteriogenesis through paracrine mechanisms.
Circ Res.
2004;
94
678
MissingFormLabel
- 20
Laufs U, Werner N, Link A. et
al .
Physical Training Increases Endothelial Progenitor
Cells, Inhibits Neointima Formation, and Enhances Angiogenesis.
Circulation.
2004;
109
220-226
MissingFormLabel
- 21
Lazarous D F, Unger E F, Epstein S E. et al .
Basic fibroblast growth
factor in patients with intermittent claudication: results of a
phase I trial.
J Am Coll Cardiol.
2000;
36
1239
MissingFormLabel
- 22
Lederman R J, Mendelsohn F O, Anderson R D. et al .
Therapeutic angiogenesis
with recombinant fibroblast growth factor-2 for intermittent claudication
(the TRAFFIC study): a randomised trial.
Lancet.
2002;
359
2053-2058
MissingFormLabel
- 23
Meier P, Gloekler S, Zbinden R. et al .
Beneficial Effect of Recruitable Collaterals.
A 10-Year Follow-Up Study in Patients With Stable Coronary Artery
Disease Undergoing Quantitative Collateral Measurements.
Circulation.
2007;
116
975-983
MissingFormLabel
- 24
Perera D, Kanaganayagam G S, Saha M, Rashid R, Marber M S, Redwood S R.
Coronary collaterals remain recruitable after percutaneous intervention.
Circulation.
2007;
115
2015-2021
MissingFormLabel
- 25
Pipp F, Heil M, Issbrucker K. et
al .
VEGFR-1-selective VEGF homologue PlGF is arteriogenic:
evidence for a monocyte-mediated mechanism.
Circ Res.
2003;
92
378-385
MissingFormLabel
- 26
Rajagopalan S, Mohler E R, III, Lederman R J. et al .
Regional
Angiogenesis With Vascular Endothelial Growth Factor in Peripheral
Arterial Disease: A Phase II Randomized, Double-Blind, Controlled
Study of Adenoviral Delivery of Vascular Endothelial Growth Factor
121 in Patients With Disabling Intermittent Claudication.
Circulation.
2003;
108
1933-1938
MissingFormLabel
- 27
Rehman J.
An Inconvenient Truth: Recognizing Individual Differences in
Arteriogenesis.
Circ Res.
2008;
102
1146-1147
MissingFormLabel
- 28
Sabia P J, Powers E R, Ragosta M, Sarembock I J, Burwell L R, Kaul S.
An association
between collateral blood flow and myocardial viability in patients
with recent myocardial infarction.
N Engl J Med.
1992;
327
1825-1831
MissingFormLabel
- 29
Schaper W.
On arteriogenesis – a reply.
Basic Res Cardiol.
2003;
98
183-184
MissingFormLabel
- 30
Schirmer S H, Buschmann I R, Jost M M. et al .
Differential effects of
MCP-1 and leptin on collateral flow and arteriogenesis.
Cardiovasc
Res.
2004;
64
356-364
MissingFormLabel
- 31
Schirmer S H, Fledderus J O, Bot P TG. et al .
Interferon-beta signaling
is enhanced in patients with insufficient coronary collateral artery
development and inhibits arteriogenesis in mice.
Circ
Res.
2008;
102
1286-1294
MissingFormLabel
- 32
Schirmer S H, van Nooijen F C, Piek J J, van Royen N.
Stimulation
of Collateral Artery Growth: Travelling Further Down the Road to
Clinical Application.
Heart.
2009;
95
191-197
MissingFormLabel
- 33
Schirmer S H, van Royen N.
Stimulation of collateral
artery growth: a potential treatment for peripheral artery disease.
Expert Rev Cardiovasc Ther.
2004;
2
581-588
MissingFormLabel
- 34
Schirmer S H, van Royen N, Baan Jr J. et al .
Direct blood-sampling from the collateral
circulation provides new insights in human collateral artery growth.
J Am Coll Cardiol.
2008;
51
A278-A371
MissingFormLabel
- 35
Seiler C.
The human coronary collateral circulation.
Heart.
2003;
89
1352-1357
MissingFormLabel
- 36
Seiler C, Fleisch M, Garachemani A, Meier B.
Coronary collateral quantitation
in patients with coronary artery disease using intravascular flow
velocity or pressure measurements.
J Am Coll Cardiol.
1998;
32
1272
MissingFormLabel
- 37
Seiler C, Pohl T, Wustmann K. et al .
Promotion of collateral growth by granulocyte-macrophage
colony-stimulating factor in patients with coronary artery disease:
a randomized, double-blind, placebo-controlled study.
Circulation.
2001;
104
2012-2017
MissingFormLabel
- 38
Shyy J YJ, Chien S.
Role of Integrins in Endothelial
Mechanosensing of Shear Stress.
Circ Res.
2002;
91
769-775
MissingFormLabel
- 39
Simons M, Annex B H, Laham R J. et al .
Pharmacological treatment
of coronary artery disease with recombinant fibroblast growth factor-2:
double-blind, randomized, controlled clinical trial.
Circulation.
2002;
105
788-793
MissingFormLabel
- 40
Stabile E, Burnett M S, Watkins C. et al .
Impaired arteriogenic response to acute
hindlimb ischemia in CD4-knockout mice.
Circulation.
2003;
108
205-210
MissingFormLabel
- 41
Stabile E, Kinnaird T, la S ala
A. et al .
CD8+ T lymphocytes
regulate the arteriogenic response to ischemia by infiltrating the
site of collateral vessel development and recruiting CD4+ mononuclear
cells through the expression of interleukin-16.
Circulation.
2006;
113
118-124
MissingFormLabel
- 42
van Royen N, Hoefer I, Bottinger M. et al .
Local Monocyte Chemoattractant Protein-1
Therapy Increases Collateral Artery Formation in Apolipoprotein
E-Deficient Mice but Induces Systemic Monocytic CD11b Expression,
Neointimal Formation, and Plaque Progression.
Circ Res.
2003;
92
218-225
MissingFormLabel
- 43
van Royen N, Hoefer I, Buschmann I. et al .
Exogenous application of transforming growth
factor beta 1 stimulates arteriogenesis in the peripheral circulation.
FASEB J.
2002;
16
432-434
MissingFormLabel
- 44
van Royen N, Schirmer S H, Atasever B. et al .
START Trial: a pilot study on STimulation
of ARTeriogenesis using subcutaneous application of granulocyte-macrophage
colony-stimulating factor as a new treatment for peripheral vascular
disease.
Circulation.
2005;
112
1040-1046
MissingFormLabel
- 45
van Weel V, Toes R E, Seghers L. et al .
Natural Killer Cells and CD4+ T-Cells
Modulate Collateral Artery Development.
Arterioscler Thromb Vasc
Biol.
2007;
27
2310-2318
MissingFormLabel
- 46
Vogel R, Zbinden R, Indermuhle A, Windecker S, Meier B, Seiler C.
Collateral-flow measurements
in humans by myocardial contrast echocardiography: validation of
coronary pressure-derived collateral-flow assessment.
Eur
Heart J.
2006;
27
157-165
MissingFormLabel
- 47
Yang H T, Laughlin M H, Terjung R L.
Prior exercise training increases collateral-dependent
blood flow in rats after acute femoral artery occlusion.
Am
J Physiol Heart Circ Physiol.
2000;
279
H1890-1897
MissingFormLabel
- 48
Zbinden R, Zbinden S, Meier P. et al .
Coronary collateral flow in response to
endurance exercise training.
Eur J Cardiovasc Prev Rehabil.
2007;
14
250-257
MissingFormLabel
- 49
Zbinden S, Zbinden R, Meier P, Windecker S, Seiler C.
Safety and efficacy of subcutaneous-only granulocyte-macrophage
colony-stimulating factor for collateral growth promotion in patients
with coronary artery disease.
J Am Coll Cardiol.
2005;
46
1636-1642
MissingFormLabel
- 50
Ziegelhoeffer T, Fernandez B, Kostin S. et al .
Bone marrow-derived cells do not incorporate
into the adult growing vasculature.
Circ Res.
2004;
94
230
MissingFormLabel
Dr. Dr. med. Stephan H. Schirmer
Klinik für Innere
Medizin III, Universitätsklinikum des
Saarlandes
Kirrberger Straße
66421
Homburg/Saar
Phone: 06841/16-21333
Fax: 06841/16-23434
Email: Stephan.Schirmer@uks.eu